电火花加工工艺参数优化的优化反向传播神经网络方法和模拟退火算法

M. A. Moghaddam, F. Kolahan
{"title":"电火花加工工艺参数优化的优化反向传播神经网络方法和模拟退火算法","authors":"M. A. Moghaddam, F. Kolahan","doi":"10.1504/IJMR.2015.071616","DOIUrl":null,"url":null,"abstract":"The present research addresses the multi-criteria modelling and optimisation of electrical discharge machining (EDM) process, via optimised back propagation neural networks (OBPNN) and simulated annealing (SA) algorithm. The process response characteristics considered are material removal rate, surface roughness, and tool wear rate. The process input parameters include voltage, peak current, pulse off time, and pulse on time and duty factor. The three performance characteristics are combined into a single objective using weighted normalised grades (WNG) obtained from experimental study based on Taguchi method, to develop the artificial neural network (ANN) model. In order to enhance the prediction capability of the proposed model, its architecture is tuned by SA algorithm. Next, the developed model is embedded into SA algorithm to determine the best set of process parameters values for an optimal set of outputs. Experimental results indicate that the proposed optimisation procedure is quite efficient in modelling and optimisation of EDM process parameters. [Received 25 January 2015; Revised 12 April 2015; Accepted 3 May 2015]","PeriodicalId":154059,"journal":{"name":"Int. J. Manuf. Res.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An optimised back propagation neural network approach and simulated annealing algorithm towards optimisation of EDM process parameters\",\"authors\":\"M. A. Moghaddam, F. Kolahan\",\"doi\":\"10.1504/IJMR.2015.071616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present research addresses the multi-criteria modelling and optimisation of electrical discharge machining (EDM) process, via optimised back propagation neural networks (OBPNN) and simulated annealing (SA) algorithm. The process response characteristics considered are material removal rate, surface roughness, and tool wear rate. The process input parameters include voltage, peak current, pulse off time, and pulse on time and duty factor. The three performance characteristics are combined into a single objective using weighted normalised grades (WNG) obtained from experimental study based on Taguchi method, to develop the artificial neural network (ANN) model. In order to enhance the prediction capability of the proposed model, its architecture is tuned by SA algorithm. Next, the developed model is embedded into SA algorithm to determine the best set of process parameters values for an optimal set of outputs. Experimental results indicate that the proposed optimisation procedure is quite efficient in modelling and optimisation of EDM process parameters. [Received 25 January 2015; Revised 12 April 2015; Accepted 3 May 2015]\",\"PeriodicalId\":154059,\"journal\":{\"name\":\"Int. J. Manuf. Res.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Manuf. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMR.2015.071616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Manuf. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMR.2015.071616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本研究通过优化的反向传播神经网络(OBPNN)和模拟退火(SA)算法解决了电火花加工(EDM)过程的多准则建模和优化。考虑的过程响应特性是材料去除率、表面粗糙度和工具磨损率。过程输入参数包括电压、峰值电流、脉冲关闭时间、脉冲接通时间和占空比。利用基于田口方法的实验研究得到的加权归一化分数(WNG),将这三个性能特征组合成一个单一的目标,建立人工神经网络(ANN)模型。为了提高模型的预测能力,对模型进行了结构调整。接下来,将开发的模型嵌入到SA算法中,以确定一组最佳输出的最佳过程参数值。实验结果表明,所提出的优化方法对电火花加工工艺参数的建模和优化是非常有效的。[2015年1月25日收到;2015年4月12日修订;接受2015年5月3日]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimised back propagation neural network approach and simulated annealing algorithm towards optimisation of EDM process parameters
The present research addresses the multi-criteria modelling and optimisation of electrical discharge machining (EDM) process, via optimised back propagation neural networks (OBPNN) and simulated annealing (SA) algorithm. The process response characteristics considered are material removal rate, surface roughness, and tool wear rate. The process input parameters include voltage, peak current, pulse off time, and pulse on time and duty factor. The three performance characteristics are combined into a single objective using weighted normalised grades (WNG) obtained from experimental study based on Taguchi method, to develop the artificial neural network (ANN) model. In order to enhance the prediction capability of the proposed model, its architecture is tuned by SA algorithm. Next, the developed model is embedded into SA algorithm to determine the best set of process parameters values for an optimal set of outputs. Experimental results indicate that the proposed optimisation procedure is quite efficient in modelling and optimisation of EDM process parameters. [Received 25 January 2015; Revised 12 April 2015; Accepted 3 May 2015]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信