{"title":"学习图融合查询和数据库特定的图像检索","authors":"Chih-Kuan Yeh, Wei-Chieh Wu, Y. Wang","doi":"10.1109/MMSP.2016.7813337","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a graph-based image retrieval algorithm via query and database specific feature fusion. While existing feature fusion approaches exist for image retrieval, they typically do not consider the image database of interest (i.e., to be retrieved) for observing the associated feature contributions. In the offline learning stage, our proposed method first identifies representative features for describing images to be retrieved. Given a query input, we further exploit and integrate its visual information and utilize graph-based fusion for performing query-database specific retrieval. In our experiments, we show that our proposed method achieves promising performance on the benchmark database of UKbench, and performs favorably against recent fusion-based image retrieval approaches.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning graph fusion for query and database specific image retrieval\",\"authors\":\"Chih-Kuan Yeh, Wei-Chieh Wu, Y. Wang\",\"doi\":\"10.1109/MMSP.2016.7813337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a graph-based image retrieval algorithm via query and database specific feature fusion. While existing feature fusion approaches exist for image retrieval, they typically do not consider the image database of interest (i.e., to be retrieved) for observing the associated feature contributions. In the offline learning stage, our proposed method first identifies representative features for describing images to be retrieved. Given a query input, we further exploit and integrate its visual information and utilize graph-based fusion for performing query-database specific retrieval. In our experiments, we show that our proposed method achieves promising performance on the benchmark database of UKbench, and performs favorably against recent fusion-based image retrieval approaches.\",\"PeriodicalId\":113192,\"journal\":{\"name\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2016.7813337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning graph fusion for query and database specific image retrieval
In this paper, we propose a graph-based image retrieval algorithm via query and database specific feature fusion. While existing feature fusion approaches exist for image retrieval, they typically do not consider the image database of interest (i.e., to be retrieved) for observing the associated feature contributions. In the offline learning stage, our proposed method first identifies representative features for describing images to be retrieved. Given a query input, we further exploit and integrate its visual information and utilize graph-based fusion for performing query-database specific retrieval. In our experiments, we show that our proposed method achieves promising performance on the benchmark database of UKbench, and performs favorably against recent fusion-based image retrieval approaches.