工作推荐系统的设计与实现

K. C. Kara, S. Esen, Neşe Kahyalar, A. Karakas, Tevfik Aytekin
{"title":"工作推荐系统的设计与实现","authors":"K. C. Kara, S. Esen, Neşe Kahyalar, A. Karakas, Tevfik Aytekin","doi":"10.1109/UBMK.2017.8093515","DOIUrl":null,"url":null,"abstract":"Recommender systems help people to find items of interest by utilizing past user interactions (such as product views, ratings, and purchases). Today many e-commerce sites and large scale web applications use recommender systems and provide their customers personalized products. In this work we will share our recent experience in developing a job recommender system based on collaborative filtering at Kariyer.net. In particular, we will explain how and why we choose the recommender algorithm developed in the system, methods for evaluating success, and the system architecture. We will also mention future work that we plan to pursue for solving the problems we face in practice after this successful first attempt.","PeriodicalId":201903,"journal":{"name":"2017 International Conference on Computer Science and Engineering (UBMK)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and implemenatation of a job recommender system\",\"authors\":\"K. C. Kara, S. Esen, Neşe Kahyalar, A. Karakas, Tevfik Aytekin\",\"doi\":\"10.1109/UBMK.2017.8093515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems help people to find items of interest by utilizing past user interactions (such as product views, ratings, and purchases). Today many e-commerce sites and large scale web applications use recommender systems and provide their customers personalized products. In this work we will share our recent experience in developing a job recommender system based on collaborative filtering at Kariyer.net. In particular, we will explain how and why we choose the recommender algorithm developed in the system, methods for evaluating success, and the system architecture. We will also mention future work that we plan to pursue for solving the problems we face in practice after this successful first attempt.\",\"PeriodicalId\":201903,\"journal\":{\"name\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK.2017.8093515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2017.8093515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推荐系统通过利用过去的用户交互(如产品视图、评级和购买)帮助人们找到感兴趣的项目。今天,许多电子商务网站和大型web应用程序使用推荐系统并为客户提供个性化的产品。在这项工作中,我们将分享我们最近在Kariyer.net开发基于协同过滤的工作推荐系统的经验。特别是,我们将解释如何以及为什么我们选择在系统中开发的推荐算法,评估成功的方法以及系统架构。我们还将提到在这次成功的首次尝试之后,我们计划继续开展的工作,以解决我们在实践中面临的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and implemenatation of a job recommender system
Recommender systems help people to find items of interest by utilizing past user interactions (such as product views, ratings, and purchases). Today many e-commerce sites and large scale web applications use recommender systems and provide their customers personalized products. In this work we will share our recent experience in developing a job recommender system based on collaborative filtering at Kariyer.net. In particular, we will explain how and why we choose the recommender algorithm developed in the system, methods for evaluating success, and the system architecture. We will also mention future work that we plan to pursue for solving the problems we face in practice after this successful first attempt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信