使用区间分析的类迈克斯纳参数识别

Safa Maraoui, A. Krifa, Kais Bouzrara
{"title":"使用区间分析的类迈克斯纳参数识别","authors":"Safa Maraoui, A. Krifa, Kais Bouzrara","doi":"10.1109/ICEMIS.2017.8273017","DOIUrl":null,"url":null,"abstract":"In this paper, the Meixner-like model is used to represent the linear discrete-time system. Furthermore, we present, from input/output measurements a recursive representation of Meixner-like model. The minimization of the Normalized Mean Square Error is considered to estimate the optimal Meixner-like pole. The belonging domain of the parameters, which is compatible with the model structure, measurements and the bounds of the error, is defined by the interval values. A numerical simulation shows the efficiency of the approach.","PeriodicalId":117908,"journal":{"name":"2017 International Conference on Engineering & MIS (ICEMIS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Meixner-like parameters identification using interval analysis\",\"authors\":\"Safa Maraoui, A. Krifa, Kais Bouzrara\",\"doi\":\"10.1109/ICEMIS.2017.8273017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Meixner-like model is used to represent the linear discrete-time system. Furthermore, we present, from input/output measurements a recursive representation of Meixner-like model. The minimization of the Normalized Mean Square Error is considered to estimate the optimal Meixner-like pole. The belonging domain of the parameters, which is compatible with the model structure, measurements and the bounds of the error, is defined by the interval values. A numerical simulation shows the efficiency of the approach.\",\"PeriodicalId\":117908,\"journal\":{\"name\":\"2017 International Conference on Engineering & MIS (ICEMIS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Engineering & MIS (ICEMIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMIS.2017.8273017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Engineering & MIS (ICEMIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMIS.2017.8273017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用类meixner模型来表示线性离散系统。此外,我们从输入/输出测量中提出了一个递归表示的类meixner模型。考虑最小化归一化均方误差来估计最优的类迈克斯纳极点。由区间值定义与模型结构、测量值和误差范围相适应的参数归属域。数值仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meixner-like parameters identification using interval analysis
In this paper, the Meixner-like model is used to represent the linear discrete-time system. Furthermore, we present, from input/output measurements a recursive representation of Meixner-like model. The minimization of the Normalized Mean Square Error is considered to estimate the optimal Meixner-like pole. The belonging domain of the parameters, which is compatible with the model structure, measurements and the bounds of the error, is defined by the interval values. A numerical simulation shows the efficiency of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信