恶意软件分析方法使用可视化二进制文件

Kyoung-Soo Han, Jae Hyun Lim, E. Im
{"title":"恶意软件分析方法使用可视化二进制文件","authors":"Kyoung-Soo Han, Jae Hyun Lim, E. Im","doi":"10.1145/2513228.2513294","DOIUrl":null,"url":null,"abstract":"Malware authors have been generating and disseminating malware variants through various ways, such as reusing modules or using automated malware generation tools. With the help of the malware generation techniques, the number of malware keeps increasing every year. Therefore, new malware analysis techniques are needed to reduce malware analysis overheads. Recently several malware visualization methods were proposed to help malware analysts. In this paper, we proposed a novel method to visually analyze malware by transforming malware binary information into image matrices. Our experimental results show that the image matrices of malware can effectively classify malware families.","PeriodicalId":120340,"journal":{"name":"Research in Adaptive and Convergent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"Malware analysis method using visualization of binary files\",\"authors\":\"Kyoung-Soo Han, Jae Hyun Lim, E. Im\",\"doi\":\"10.1145/2513228.2513294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware authors have been generating and disseminating malware variants through various ways, such as reusing modules or using automated malware generation tools. With the help of the malware generation techniques, the number of malware keeps increasing every year. Therefore, new malware analysis techniques are needed to reduce malware analysis overheads. Recently several malware visualization methods were proposed to help malware analysts. In this paper, we proposed a novel method to visually analyze malware by transforming malware binary information into image matrices. Our experimental results show that the image matrices of malware can effectively classify malware families.\",\"PeriodicalId\":120340,\"journal\":{\"name\":\"Research in Adaptive and Convergent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2513228.2513294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513228.2513294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

恶意软件作者一直在通过各种方式生成和传播恶意软件变体,例如重用模块或使用自动恶意软件生成工具。在恶意软件生成技术的帮助下,恶意软件的数量每年都在增加。因此,需要新的恶意软件分析技术来减少恶意软件分析开销。最近提出了几种恶意软件可视化方法来帮助恶意软件分析人员。本文提出了一种将恶意软件二进制信息转换成图像矩阵的方法来可视化分析恶意软件。实验结果表明,恶意软件图像矩阵可以有效地对恶意软件家族进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Malware analysis method using visualization of binary files
Malware authors have been generating and disseminating malware variants through various ways, such as reusing modules or using automated malware generation tools. With the help of the malware generation techniques, the number of malware keeps increasing every year. Therefore, new malware analysis techniques are needed to reduce malware analysis overheads. Recently several malware visualization methods were proposed to help malware analysts. In this paper, we proposed a novel method to visually analyze malware by transforming malware binary information into image matrices. Our experimental results show that the image matrices of malware can effectively classify malware families.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信