{"title":"使用深度学习的数字图像取证方法中的数据预处理模块综述","authors":"Alexandre Berthet, J. Dugelay","doi":"10.1109/VCIP49819.2020.9301880","DOIUrl":null,"url":null,"abstract":"Access to technologies like mobile phones contributes to the significant increase in the volume of digital visual data (images and videos). In addition, photo editing software is becoming increasingly powerful and easy to use. In some cases, these tools can be utilized to produce forgeries with the objective to change the semantic meaning of a photo or a video (e.g. fake news). Digital image forensics (DIF) includes two main objectives: the detection (and localization) of forgery and the identification of the origin of the acquisition (i.e. sensor identification). Since 2005, many classical methods for DIF have been designed, implemented and tested on several databases. Meantime, innovative approaches based on deep learning have emerged in other fields and have surpassed traditional techniques. In the context of DIF, deep learning methods mainly use convolutional neural networks (CNN) associated with significant preprocessing modules. This is an active domain and two possible ways to operate preprocessing have been studied: prior to the network or incorporated into it. None of the various studies on the digital image forensics provide a comprehensive overview of the preprocessing techniques used with deep learning methods. Therefore, the core objective of this article is to review the preprocessing modules associated with CNN models.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A review of data preprocessing modules in digital image forensics methods using deep learning\",\"authors\":\"Alexandre Berthet, J. Dugelay\",\"doi\":\"10.1109/VCIP49819.2020.9301880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Access to technologies like mobile phones contributes to the significant increase in the volume of digital visual data (images and videos). In addition, photo editing software is becoming increasingly powerful and easy to use. In some cases, these tools can be utilized to produce forgeries with the objective to change the semantic meaning of a photo or a video (e.g. fake news). Digital image forensics (DIF) includes two main objectives: the detection (and localization) of forgery and the identification of the origin of the acquisition (i.e. sensor identification). Since 2005, many classical methods for DIF have been designed, implemented and tested on several databases. Meantime, innovative approaches based on deep learning have emerged in other fields and have surpassed traditional techniques. In the context of DIF, deep learning methods mainly use convolutional neural networks (CNN) associated with significant preprocessing modules. This is an active domain and two possible ways to operate preprocessing have been studied: prior to the network or incorporated into it. None of the various studies on the digital image forensics provide a comprehensive overview of the preprocessing techniques used with deep learning methods. Therefore, the core objective of this article is to review the preprocessing modules associated with CNN models.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A review of data preprocessing modules in digital image forensics methods using deep learning
Access to technologies like mobile phones contributes to the significant increase in the volume of digital visual data (images and videos). In addition, photo editing software is becoming increasingly powerful and easy to use. In some cases, these tools can be utilized to produce forgeries with the objective to change the semantic meaning of a photo or a video (e.g. fake news). Digital image forensics (DIF) includes two main objectives: the detection (and localization) of forgery and the identification of the origin of the acquisition (i.e. sensor identification). Since 2005, many classical methods for DIF have been designed, implemented and tested on several databases. Meantime, innovative approaches based on deep learning have emerged in other fields and have surpassed traditional techniques. In the context of DIF, deep learning methods mainly use convolutional neural networks (CNN) associated with significant preprocessing modules. This is an active domain and two possible ways to operate preprocessing have been studied: prior to the network or incorporated into it. None of the various studies on the digital image forensics provide a comprehensive overview of the preprocessing techniques used with deep learning methods. Therefore, the core objective of this article is to review the preprocessing modules associated with CNN models.