一种新的基于层次HMM的异常检测方法

Xiaoqiang Zhang, P. Fan, Zhongliang Zhu
{"title":"一种新的基于层次HMM的异常检测方法","authors":"Xiaoqiang Zhang, P. Fan, Zhongliang Zhu","doi":"10.1109/PDCAT.2003.1236299","DOIUrl":null,"url":null,"abstract":"The state transition, which is hidden in the hidden Markov model (HMM), can be used to characterize the intrinsic difference between normal action and intrusion behavior. So HMM is an efficient way to detect anomalies. A new anomaly detection method based on a hierarchical HMM is proposed based on the concept of normal database and abnormal database. It is shown by analysis and simulation results that the proposed method is effective to increase the accuracy of anomaly detection.","PeriodicalId":145111,"journal":{"name":"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"A new anomaly detection method based on hierarchical HMM\",\"authors\":\"Xiaoqiang Zhang, P. Fan, Zhongliang Zhu\",\"doi\":\"10.1109/PDCAT.2003.1236299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state transition, which is hidden in the hidden Markov model (HMM), can be used to characterize the intrinsic difference between normal action and intrusion behavior. So HMM is an efficient way to detect anomalies. A new anomaly detection method based on a hierarchical HMM is proposed based on the concept of normal database and abnormal database. It is shown by analysis and simulation results that the proposed method is effective to increase the accuracy of anomaly detection.\",\"PeriodicalId\":145111,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2003.1236299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2003.1236299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

隐藏在隐马尔可夫模型(HMM)中的状态转移可以用来表征正常行为和入侵行为之间的内在差异。HMM是一种有效的异常检测方法。基于正常数据库和异常数据库的概念,提出了一种基于层次HMM的异常检测方法。分析和仿真结果表明,该方法能有效提高异常检测的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new anomaly detection method based on hierarchical HMM
The state transition, which is hidden in the hidden Markov model (HMM), can be used to characterize the intrinsic difference between normal action and intrusion behavior. So HMM is an efficient way to detect anomalies. A new anomaly detection method based on a hierarchical HMM is proposed based on the concept of normal database and abnormal database. It is shown by analysis and simulation results that the proposed method is effective to increase the accuracy of anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信