用于探测南极鸟类种群密度的深度学习软件

S. Uğuz
{"title":"用于探测南极鸟类种群密度的深度学习软件","authors":"S. Uğuz","doi":"10.56415/csjm.v31.11","DOIUrl":null,"url":null,"abstract":"Monitoring populations of bird species living in Antarctica with current technologies is critical to the future of habitats on the continent. Studies of bird species living in Antarctica are limited due to climate, challenging geographic conditions, and transportation and logistical constraints. The goal of this study is to develop Deep Learning-based software to determine the population densities of Antarctic penguins and endangered albatrosses. Images of penguins and albatrosses obtained from internet sources were labeled using the segmentation technique. For this purpose, 4144 labeled data were trained with five different convolutional neural network architectures TOOD, YOLOv3, YOLOF, Mask R-CNN, and Sparse R-CNN. The performance of the obtained models was measured using the average precision (AP) metric. The experimental results show that the TOOD-ResNet50 model with 0.73 {$AP^{50}$} detects the Antarctic birds adequately compared to the other models. At the end of the study, a software was developed to detect penguins and albatrosses in real time","PeriodicalId":262087,"journal":{"name":"Comput. Sci. J. Moldova","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based software for detecting population density of Antarctic birds\",\"authors\":\"S. Uğuz\",\"doi\":\"10.56415/csjm.v31.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring populations of bird species living in Antarctica with current technologies is critical to the future of habitats on the continent. Studies of bird species living in Antarctica are limited due to climate, challenging geographic conditions, and transportation and logistical constraints. The goal of this study is to develop Deep Learning-based software to determine the population densities of Antarctic penguins and endangered albatrosses. Images of penguins and albatrosses obtained from internet sources were labeled using the segmentation technique. For this purpose, 4144 labeled data were trained with five different convolutional neural network architectures TOOD, YOLOv3, YOLOF, Mask R-CNN, and Sparse R-CNN. The performance of the obtained models was measured using the average precision (AP) metric. The experimental results show that the TOOD-ResNet50 model with 0.73 {$AP^{50}$} detects the Antarctic birds adequately compared to the other models. At the end of the study, a software was developed to detect penguins and albatrosses in real time\",\"PeriodicalId\":262087,\"journal\":{\"name\":\"Comput. Sci. J. Moldova\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Sci. J. Moldova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56415/csjm.v31.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Sci. J. Moldova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56415/csjm.v31.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用现有技术监测生活在南极洲的鸟类种群对该大陆栖息地的未来至关重要。由于气候、具有挑战性的地理条件以及交通和后勤方面的限制,对生活在南极洲的鸟类的研究受到限制。这项研究的目标是开发基于深度学习的软件,以确定南极企鹅和濒危信天翁的种群密度。利用分割技术对从网络上获取的企鹅和信天翁图像进行标记。为此,使用5种不同的卷积神经网络架构todd、YOLOv3、YOLOF、Mask R-CNN和Sparse R-CNN对4144个标记数据进行训练。使用平均精度(AP)度量度量所获得的模型的性能。实验结果表明,与其他模型相比,0.73 {$AP^{50}$}的TOOD-ResNet50模型对南极鸟类的探测效果较好。在研究结束时,开发了一个软件来实时检测企鹅和信天翁
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based software for detecting population density of Antarctic birds
Monitoring populations of bird species living in Antarctica with current technologies is critical to the future of habitats on the continent. Studies of bird species living in Antarctica are limited due to climate, challenging geographic conditions, and transportation and logistical constraints. The goal of this study is to develop Deep Learning-based software to determine the population densities of Antarctic penguins and endangered albatrosses. Images of penguins and albatrosses obtained from internet sources were labeled using the segmentation technique. For this purpose, 4144 labeled data were trained with five different convolutional neural network architectures TOOD, YOLOv3, YOLOF, Mask R-CNN, and Sparse R-CNN. The performance of the obtained models was measured using the average precision (AP) metric. The experimental results show that the TOOD-ResNet50 model with 0.73 {$AP^{50}$} detects the Antarctic birds adequately compared to the other models. At the end of the study, a software was developed to detect penguins and albatrosses in real time
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信