基于更快R-CNN的浮动网箱数量变化检测

I. Priyanto, C. A. Hartanto, A. M. Arymurthy
{"title":"基于更快R-CNN的浮动网箱数量变化检测","authors":"I. Priyanto, C. A. Hartanto, A. M. Arymurthy","doi":"10.1109/IC2IE50715.2020.9274685","DOIUrl":null,"url":null,"abstract":"The aquaculture method uses floating net cages are the most productive fish farming techniques. We utilize deep learning for change detection and monitoring of floating net cages quantities by detecting & counting the number of floating net cages plots on the same Region of Interest (RoI) in different years using google earth satellite imagery. The proposed methods apply Faster R-CNN for detection purposes and compare Faster R-CNN between using NASNet-A and inception-v2 as the feature extractor. Our experiments have been conducted on annotation images by cropping google earth images to demonstrate the effectiveness and efficiency of the proposed method. The results show that Faster R-CNN using NASNet-A achieves higher accuracy with longer training time. In addition, Faster R-CNN with inception-v2 network also provided promising results with lower training time.","PeriodicalId":211983,"journal":{"name":"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Change Detection of Floating Net Cages Quantities Utilizing Faster R-CNN\",\"authors\":\"I. Priyanto, C. A. Hartanto, A. M. Arymurthy\",\"doi\":\"10.1109/IC2IE50715.2020.9274685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aquaculture method uses floating net cages are the most productive fish farming techniques. We utilize deep learning for change detection and monitoring of floating net cages quantities by detecting & counting the number of floating net cages plots on the same Region of Interest (RoI) in different years using google earth satellite imagery. The proposed methods apply Faster R-CNN for detection purposes and compare Faster R-CNN between using NASNet-A and inception-v2 as the feature extractor. Our experiments have been conducted on annotation images by cropping google earth images to demonstrate the effectiveness and efficiency of the proposed method. The results show that Faster R-CNN using NASNet-A achieves higher accuracy with longer training time. In addition, Faster R-CNN with inception-v2 network also provided promising results with lower training time.\",\"PeriodicalId\":211983,\"journal\":{\"name\":\"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC2IE50715.2020.9274685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2IE50715.2020.9274685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用浮式网箱的水产养殖方法是产量最高的养鱼技术。我们利用谷歌地球卫星图像,通过检测和计算不同年份同一感兴趣区域(RoI)上的浮动网箱地块的数量,利用深度学习进行浮动网箱数量的变化检测和监测。提出的方法采用Faster R-CNN进行检测,并比较了使用NASNet-A和inception-v2作为特征提取器的Faster R-CNN。我们通过裁剪google earth图像对标注图像进行了实验,验证了所提出方法的有效性和效率。结果表明,使用NASNet-A的更快R-CNN在更长的训练时间内获得了更高的准确率。此外,采用inception-v2网络的更快R-CNN在更短的训练时间内也取得了令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Change Detection of Floating Net Cages Quantities Utilizing Faster R-CNN
The aquaculture method uses floating net cages are the most productive fish farming techniques. We utilize deep learning for change detection and monitoring of floating net cages quantities by detecting & counting the number of floating net cages plots on the same Region of Interest (RoI) in different years using google earth satellite imagery. The proposed methods apply Faster R-CNN for detection purposes and compare Faster R-CNN between using NASNet-A and inception-v2 as the feature extractor. Our experiments have been conducted on annotation images by cropping google earth images to demonstrate the effectiveness and efficiency of the proposed method. The results show that Faster R-CNN using NASNet-A achieves higher accuracy with longer training time. In addition, Faster R-CNN with inception-v2 network also provided promising results with lower training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信