{"title":"基于深度特征重构损失的神经网络压缩域学习","authors":"Liuhong Chen, Heming Sun, Xiaoyang Zeng, Yibo Fan","doi":"10.1109/VCIP56404.2022.10008841","DOIUrl":null,"url":null,"abstract":"To speedup the image classification process which conventionally takes the reconstructed images as input, compressed domain methods choose to use the compressed images without decompression as input. Correspondingly, there will be a certain decline about the accuracy. Our goal in this paper is to raise the accuracy of compressed domain classification method using compressed images output by the NN-based image compression networks. Firstly, we design a hybrid objective loss function which contains the reconstruction loss of deep feature map. Secondly, one image reconstruction layer is inte-grated into the image classification network for up-sampling the compressed representation. These methods greatly help increase the compressed domain image classification accuracy and need no extra computational complexity. Experimental results on the benchmark ImageNet prove that our design outperforms the latest work ResNet-41 with a large accuracy gain, about 4.49% on the top-1 classification accuracy. Besides, the accuracy lagging behinds the method using reconstructed images is also reduced to 0.47 %. Moreover, our designed classification network has the lowest computational complexity and model complexity.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning from the NN-based Compressed Domain with Deep Feature Reconstruction Loss\",\"authors\":\"Liuhong Chen, Heming Sun, Xiaoyang Zeng, Yibo Fan\",\"doi\":\"10.1109/VCIP56404.2022.10008841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To speedup the image classification process which conventionally takes the reconstructed images as input, compressed domain methods choose to use the compressed images without decompression as input. Correspondingly, there will be a certain decline about the accuracy. Our goal in this paper is to raise the accuracy of compressed domain classification method using compressed images output by the NN-based image compression networks. Firstly, we design a hybrid objective loss function which contains the reconstruction loss of deep feature map. Secondly, one image reconstruction layer is inte-grated into the image classification network for up-sampling the compressed representation. These methods greatly help increase the compressed domain image classification accuracy and need no extra computational complexity. Experimental results on the benchmark ImageNet prove that our design outperforms the latest work ResNet-41 with a large accuracy gain, about 4.49% on the top-1 classification accuracy. Besides, the accuracy lagging behinds the method using reconstructed images is also reduced to 0.47 %. Moreover, our designed classification network has the lowest computational complexity and model complexity.\",\"PeriodicalId\":269379,\"journal\":{\"name\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP56404.2022.10008841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning from the NN-based Compressed Domain with Deep Feature Reconstruction Loss
To speedup the image classification process which conventionally takes the reconstructed images as input, compressed domain methods choose to use the compressed images without decompression as input. Correspondingly, there will be a certain decline about the accuracy. Our goal in this paper is to raise the accuracy of compressed domain classification method using compressed images output by the NN-based image compression networks. Firstly, we design a hybrid objective loss function which contains the reconstruction loss of deep feature map. Secondly, one image reconstruction layer is inte-grated into the image classification network for up-sampling the compressed representation. These methods greatly help increase the compressed domain image classification accuracy and need no extra computational complexity. Experimental results on the benchmark ImageNet prove that our design outperforms the latest work ResNet-41 with a large accuracy gain, about 4.49% on the top-1 classification accuracy. Besides, the accuracy lagging behinds the method using reconstructed images is also reduced to 0.47 %. Moreover, our designed classification network has the lowest computational complexity and model complexity.