多核极限学习机

Li-juan Su, Min Yao
{"title":"多核极限学习机","authors":"Li-juan Su, Min Yao","doi":"10.1109/ICCA.2013.6565148","DOIUrl":null,"url":null,"abstract":"Recently a novel learning algorithm called extreme learning machine (ELM) was proposed for efficiently training single-hidden layer feedforward neural networks (SLFNs). Compared with other traditional gradient-descent-based learning algorithms, ELM has shown promising results because it chooses weights and biases of hidden nodes randomly and obtains the output weights and biases analytically. In most cases, ELM is fast and presents good generalization, but we find that the stability and generalization performance still can be improved. In this paper, we propose a hybrid model which combines the advantage of ELM and the advantage of Bayesian “sum of kernels” model, named Extreme Learning Machine with Multiple Kernels (MK-ELM). This method optimizes the kernel function using a weighted sum of kernel functions by a prior knowledge. Experimental results show that this approach is able to make neural networks more robust and generates better generalization performance for both regression and classification applications.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Extreme learning machine with multiple kernels\",\"authors\":\"Li-juan Su, Min Yao\",\"doi\":\"10.1109/ICCA.2013.6565148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently a novel learning algorithm called extreme learning machine (ELM) was proposed for efficiently training single-hidden layer feedforward neural networks (SLFNs). Compared with other traditional gradient-descent-based learning algorithms, ELM has shown promising results because it chooses weights and biases of hidden nodes randomly and obtains the output weights and biases analytically. In most cases, ELM is fast and presents good generalization, but we find that the stability and generalization performance still can be improved. In this paper, we propose a hybrid model which combines the advantage of ELM and the advantage of Bayesian “sum of kernels” model, named Extreme Learning Machine with Multiple Kernels (MK-ELM). This method optimizes the kernel function using a weighted sum of kernel functions by a prior knowledge. Experimental results show that this approach is able to make neural networks more robust and generates better generalization performance for both regression and classification applications.\",\"PeriodicalId\":336534,\"journal\":{\"name\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2013.6565148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6565148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

为了有效地训练单隐层前馈神经网络(SLFNs),最近提出了一种新的学习算法——极限学习机(ELM)。与其他传统的基于梯度下降的学习算法相比,ELM算法随机选择隐藏节点的权值和偏置,并解析地获得输出的权值和偏置,显示出良好的效果。在大多数情况下,ELM是快速和良好的泛化,但我们发现稳定性和泛化性能仍然可以提高。本文提出了一种结合ELM和贝叶斯“核和”模型优点的混合模型,称为多核极限学习机(MK-ELM)。该方法利用先验知识对核函数进行加权和来优化核函数。实验结果表明,该方法能够增强神经网络的鲁棒性,并在回归和分类应用中产生更好的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extreme learning machine with multiple kernels
Recently a novel learning algorithm called extreme learning machine (ELM) was proposed for efficiently training single-hidden layer feedforward neural networks (SLFNs). Compared with other traditional gradient-descent-based learning algorithms, ELM has shown promising results because it chooses weights and biases of hidden nodes randomly and obtains the output weights and biases analytically. In most cases, ELM is fast and presents good generalization, but we find that the stability and generalization performance still can be improved. In this paper, we propose a hybrid model which combines the advantage of ELM and the advantage of Bayesian “sum of kernels” model, named Extreme Learning Machine with Multiple Kernels (MK-ELM). This method optimizes the kernel function using a weighted sum of kernel functions by a prior knowledge. Experimental results show that this approach is able to make neural networks more robust and generates better generalization performance for both regression and classification applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信