粒子群优化算法在信号检测和盲提取中的应用

Ying Zhao, Junli Zheng
{"title":"粒子群优化算法在信号检测和盲提取中的应用","authors":"Ying Zhao, Junli Zheng","doi":"10.1109/ISPAN.2004.1300454","DOIUrl":null,"url":null,"abstract":"The particle swarm optimization (PSO) algorithm, which originated as a simulation of a simplified social system, is an evolutionary computation technique. In this paper the binary and real-valued versions of PSO algorithm are exploited in two important signal processing paradigm: multiuser detection (MUD) and blind extraction of sources (BES), respectively. The novel approaches are effective and efficient with parallel processing structure and relatively feasible implementation. Simulation results validate either PSO-MUD or PSO-BES has a significant performance improvement over conventional methods.","PeriodicalId":198404,"journal":{"name":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Particle swarm optimization algorithm in signal detection and blind extraction\",\"authors\":\"Ying Zhao, Junli Zheng\",\"doi\":\"10.1109/ISPAN.2004.1300454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The particle swarm optimization (PSO) algorithm, which originated as a simulation of a simplified social system, is an evolutionary computation technique. In this paper the binary and real-valued versions of PSO algorithm are exploited in two important signal processing paradigm: multiuser detection (MUD) and blind extraction of sources (BES), respectively. The novel approaches are effective and efficient with parallel processing structure and relatively feasible implementation. Simulation results validate either PSO-MUD or PSO-BES has a significant performance improvement over conventional methods.\",\"PeriodicalId\":198404,\"journal\":{\"name\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPAN.2004.1300454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPAN.2004.1300454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

粒子群优化算法(PSO)是一种进化计算技术,起源于对一个简化的社会系统的模拟。本文将二值和实值版本的粒子群算法分别应用于两种重要的信号处理范式:多用户检测(MUD)和源盲提取(BES)。该方法具有并行处理结构和相对可行的实现方法。仿真结果表明,PSO-MUD和PSO-BES都比传统方法有显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle swarm optimization algorithm in signal detection and blind extraction
The particle swarm optimization (PSO) algorithm, which originated as a simulation of a simplified social system, is an evolutionary computation technique. In this paper the binary and real-valued versions of PSO algorithm are exploited in two important signal processing paradigm: multiuser detection (MUD) and blind extraction of sources (BES), respectively. The novel approaches are effective and efficient with parallel processing structure and relatively feasible implementation. Simulation results validate either PSO-MUD or PSO-BES has a significant performance improvement over conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信