均匀康普顿散射体中的伽马射线

V. Uchaikin
{"title":"均匀康普顿散射体中的伽马射线","authors":"V. Uchaikin","doi":"10.15406/paij.2018.02.00144","DOIUrl":null,"url":null,"abstract":"Describing the transport of particles in a medium from a source with phase density ( ) Q x immersed in a medium, interaction of which with the particles is described by the operator L. In the problem under consideration, ( ) f x may denote the flux of photons, or their concentration, or some other local characteristics of the photon field at a point = ( , ) x r p of the phase space. For the sake of convenience, we will represent the photon momentum p through the pair of variables = / p Ω p (the direction unit vector) and = E cp (photon’s energy).","PeriodicalId":137635,"journal":{"name":"Physics & Astronomy International Journal","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Gamma-ray in a uniform compton scatterer\",\"authors\":\"V. Uchaikin\",\"doi\":\"10.15406/paij.2018.02.00144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describing the transport of particles in a medium from a source with phase density ( ) Q x immersed in a medium, interaction of which with the particles is described by the operator L. In the problem under consideration, ( ) f x may denote the flux of photons, or their concentration, or some other local characteristics of the photon field at a point = ( , ) x r p of the phase space. For the sake of convenience, we will represent the photon momentum p through the pair of variables = / p Ω p (the direction unit vector) and = E cp (photon’s energy).\",\"PeriodicalId\":137635,\"journal\":{\"name\":\"Physics & Astronomy International Journal\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics & Astronomy International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/paij.2018.02.00144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics & Astronomy International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/paij.2018.02.00144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

描述粒子在介质中的输运,其源的相密度()Q x浸没在介质中,介质与粒子的相互作用用算符l来描述。在考虑的问题中,()f x可以表示光子的通量,或者它们的浓度,或者光子场在相空间点= (,)x r p处的其他一些局部特征。为了方便起见,我们将通过一对变量= / p Ω p(方向单位矢量)和= E cp(光子能量)来表示光子动量p。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Gamma-ray in a uniform compton scatterer
Describing the transport of particles in a medium from a source with phase density ( ) Q x immersed in a medium, interaction of which with the particles is described by the operator L. In the problem under consideration, ( ) f x may denote the flux of photons, or their concentration, or some other local characteristics of the photon field at a point = ( , ) x r p of the phase space. For the sake of convenience, we will represent the photon momentum p through the pair of variables = / p Ω p (the direction unit vector) and = E cp (photon’s energy).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信