用Dirichlet问题求解分数阶微分方程α的神经网络方法

N. Duc, A. Galimyanov, I. Z. Akhmetov
{"title":"用Dirichlet问题求解分数阶微分方程α的神经网络方法","authors":"N. Duc, A. Galimyanov, I. Z. Akhmetov","doi":"10.1109/SmartIndustryCon57312.2023.10110785","DOIUrl":null,"url":null,"abstract":"In this paper, we have developed an artificial neural network (ANN) method for finding solutions to the Dirichlet problem for fractional order differential equations (FODEs) 0 <α<1 using the definition of a conformable fractional derivative. Here, we used a feedforward neural architecture, L-BFGS (Broyden – Fletcher – Goldfarb - Shanno) optimization method to minimize the error function and change the parameters (weights and biases). The main idea is that if the sum of the norms of the residuals of the equation on the domain of definition and the boundary conditions tends to zero when the unknown function y(x) is replaced by its neural network approximation N(x), then N(x) is an approximate solution of the differential equation. Some illustrative examples are given demonstrating the accuracy and efficiency of this method and comparing the results of the current method with mathematical results.","PeriodicalId":157877,"journal":{"name":"2023 International Russian Smart Industry Conference (SmartIndustryCon)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network Method for Solving Fractional Differential Equations α with the Dirichlet Problem\",\"authors\":\"N. Duc, A. Galimyanov, I. Z. Akhmetov\",\"doi\":\"10.1109/SmartIndustryCon57312.2023.10110785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have developed an artificial neural network (ANN) method for finding solutions to the Dirichlet problem for fractional order differential equations (FODEs) 0 <α<1 using the definition of a conformable fractional derivative. Here, we used a feedforward neural architecture, L-BFGS (Broyden – Fletcher – Goldfarb - Shanno) optimization method to minimize the error function and change the parameters (weights and biases). The main idea is that if the sum of the norms of the residuals of the equation on the domain of definition and the boundary conditions tends to zero when the unknown function y(x) is replaced by its neural network approximation N(x), then N(x) is an approximate solution of the differential equation. Some illustrative examples are given demonstrating the accuracy and efficiency of this method and comparing the results of the current method with mathematical results.\",\"PeriodicalId\":157877,\"journal\":{\"name\":\"2023 International Russian Smart Industry Conference (SmartIndustryCon)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Russian Smart Industry Conference (SmartIndustryCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIndustryCon57312.2023.10110785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Russian Smart Industry Conference (SmartIndustryCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIndustryCon57312.2023.10110785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了一种人工神经网络(ANN)方法,利用可调分数阶导数的定义求解分数阶微分方程(FODEs) 0 <α<1的Dirichlet问题。在这里,我们使用了一种前馈神经结构,L-BFGS (Broyden - Fletcher - Goldfarb - Shanno)优化方法来最小化误差函数并改变参数(权值和偏差)。其主要思想是,当未知函数y(x)被其神经网络近似值N(x)代替时,如果方程在定义域和边界条件上的残差的范数之和趋于零,则N(x)是微分方程的近似解。通过算例说明了该方法的准确性和有效性,并与数学结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Method for Solving Fractional Differential Equations α with the Dirichlet Problem
In this paper, we have developed an artificial neural network (ANN) method for finding solutions to the Dirichlet problem for fractional order differential equations (FODEs) 0 <α<1 using the definition of a conformable fractional derivative. Here, we used a feedforward neural architecture, L-BFGS (Broyden – Fletcher – Goldfarb - Shanno) optimization method to minimize the error function and change the parameters (weights and biases). The main idea is that if the sum of the norms of the residuals of the equation on the domain of definition and the boundary conditions tends to zero when the unknown function y(x) is replaced by its neural network approximation N(x), then N(x) is an approximate solution of the differential equation. Some illustrative examples are given demonstrating the accuracy and efficiency of this method and comparing the results of the current method with mathematical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信