一种新的基于自适应离散随机优化的相关文献检索算法

Shu-Huai Ren
{"title":"一种新的基于自适应离散随机优化的相关文献检索算法","authors":"Shu-Huai Ren","doi":"10.1109/ICCWAMTIP.2014.7073365","DOIUrl":null,"url":null,"abstract":"In recent years, information is increasing exponentially which makes it more and more difficult for people to find the needed information from the huge database. To fulfill this demanding, a high accurate and fast-time document retrieval algorithm is highly required for current applications. In this paper, based on the document similarity maximum criterion, we propose a new fast-time document retrieval algorithm based on the adaptive discrete stochastic optimization method. The designed adaptive step-size ensures the proposed algorithm converges fast to the relevant documents in the database and retrieve the optimal document. Numerical results demonstrate that the proposed algorithm gets better converge and retrieval performance than conventional methods in the huge database.","PeriodicalId":211273,"journal":{"name":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new relevant document retrieval algorithm via adaptive discrete stochastic optimization\",\"authors\":\"Shu-Huai Ren\",\"doi\":\"10.1109/ICCWAMTIP.2014.7073365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, information is increasing exponentially which makes it more and more difficult for people to find the needed information from the huge database. To fulfill this demanding, a high accurate and fast-time document retrieval algorithm is highly required for current applications. In this paper, based on the document similarity maximum criterion, we propose a new fast-time document retrieval algorithm based on the adaptive discrete stochastic optimization method. The designed adaptive step-size ensures the proposed algorithm converges fast to the relevant documents in the database and retrieve the optimal document. Numerical results demonstrate that the proposed algorithm gets better converge and retrieval performance than conventional methods in the huge database.\",\"PeriodicalId\":211273,\"journal\":{\"name\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2014.7073365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2014.7073365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,信息呈指数级增长,这使得人们越来越难以从庞大的数据库中找到所需的信息。为了满足这一要求,当前的应用迫切需要一种高精度、快速的文档检索算法。本文在文献相似度最大准则的基础上,提出了一种基于自适应离散随机优化方法的快速文献检索算法。设计的自适应步长保证了算法快速收敛到数据库中的相关文档并检索到最优文档。数值结果表明,该算法在海量数据库中具有比传统方法更好的收敛性能和检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new relevant document retrieval algorithm via adaptive discrete stochastic optimization
In recent years, information is increasing exponentially which makes it more and more difficult for people to find the needed information from the huge database. To fulfill this demanding, a high accurate and fast-time document retrieval algorithm is highly required for current applications. In this paper, based on the document similarity maximum criterion, we propose a new fast-time document retrieval algorithm based on the adaptive discrete stochastic optimization method. The designed adaptive step-size ensures the proposed algorithm converges fast to the relevant documents in the database and retrieve the optimal document. Numerical results demonstrate that the proposed algorithm gets better converge and retrieval performance than conventional methods in the huge database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信