利用深度学习优化数控插补器参数

Jian-An Lin, Ming-Tsung Lin, Yong-Zhong Li, Ya-Hsuan Wang
{"title":"利用深度学习优化数控插补器参数","authors":"Jian-An Lin, Ming-Tsung Lin, Yong-Zhong Li, Ya-Hsuan Wang","doi":"10.1109/ECICE55674.2022.10042898","DOIUrl":null,"url":null,"abstract":"A CNC parameter optimization approach is presented to predict machining quality based on deep learning. The approach aims to optimize tracking error, contouring error, and cycle time simultaneously. CNC interpolator parameters including the limit of velocity, acceleration, jerk and corner tolerance are regarded as experimental factors. The standard test toolpath KANINO is adopted to collect signals of motion axes in various combinations of interpolation parameters. The back propagation neural network (BPNN) is utilized to establish the predicted model between the interpolation parameters and machining performance index. The parameter combination is optimized by the trained BPNN model with the non-dominated sorting genetic algorithm II (NSGA II). Finally, experimental validations are provided to demonstrate effectiveness of the proposed method in improvement of machining quality.","PeriodicalId":282635,"journal":{"name":"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNC Interpolator Parameter Optimization using Deep Learning\",\"authors\":\"Jian-An Lin, Ming-Tsung Lin, Yong-Zhong Li, Ya-Hsuan Wang\",\"doi\":\"10.1109/ECICE55674.2022.10042898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A CNC parameter optimization approach is presented to predict machining quality based on deep learning. The approach aims to optimize tracking error, contouring error, and cycle time simultaneously. CNC interpolator parameters including the limit of velocity, acceleration, jerk and corner tolerance are regarded as experimental factors. The standard test toolpath KANINO is adopted to collect signals of motion axes in various combinations of interpolation parameters. The back propagation neural network (BPNN) is utilized to establish the predicted model between the interpolation parameters and machining performance index. The parameter combination is optimized by the trained BPNN model with the non-dominated sorting genetic algorithm II (NSGA II). Finally, experimental validations are provided to demonstrate effectiveness of the proposed method in improvement of machining quality.\",\"PeriodicalId\":282635,\"journal\":{\"name\":\"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECICE55674.2022.10042898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE55674.2022.10042898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于深度学习的数控加工质量预测参数优化方法。该方法旨在同时优化跟踪误差、轮廓误差和周期时间。将数控插补器的速度极限、加速度极限、加速度极限、加速度极限、转角公差等参数作为实验因素。采用标准测试刀具轨迹KANINO采集各种插补参数组合下的运动轴信号。利用反向传播神经网络(BPNN)建立插补参数与加工性能指标之间的预测模型。采用非支配排序遗传算法II (NSGA II)对训练好的BPNN模型进行参数组合优化,最后通过实验验证了该方法在提高加工质量方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNC Interpolator Parameter Optimization using Deep Learning
A CNC parameter optimization approach is presented to predict machining quality based on deep learning. The approach aims to optimize tracking error, contouring error, and cycle time simultaneously. CNC interpolator parameters including the limit of velocity, acceleration, jerk and corner tolerance are regarded as experimental factors. The standard test toolpath KANINO is adopted to collect signals of motion axes in various combinations of interpolation parameters. The back propagation neural network (BPNN) is utilized to establish the predicted model between the interpolation parameters and machining performance index. The parameter combination is optimized by the trained BPNN model with the non-dominated sorting genetic algorithm II (NSGA II). Finally, experimental validations are provided to demonstrate effectiveness of the proposed method in improvement of machining quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信