介绍了变量邻域及相关的自适应确定算法

Fang Wang, Wei Pan, Lifeng Wu, Yong Guan
{"title":"介绍了变量邻域及相关的自适应确定算法","authors":"Fang Wang, Wei Pan, Lifeng Wu, Yong Guan","doi":"10.1109/GrC.2013.6740430","DOIUrl":null,"url":null,"abstract":"The neighborhood-based multi-granulations rough set (NMGRS) is the latest extended model of the multi-granulations rough set (MGRS), which makes the MGRS can deal with real-value data. As one of the most important parameters, the neighborhood size has a significant impact on attribute reduction. However, the common methods to get a neighborhood size rely on keeping trying different values and experiences. And all the attributes are assigned the same value, which ignores their differences on the distribution and the contribution to the decision. Therefore, this paper proposes a new algorithm which assigns adaptively different attributes different neighborhood sizes (it is defined as the variable neighborhood) according to the data distributions. The minimal between class distances of each attribute is regarded as a very important indicator to form such a neighborhood size. The results of experiments on different types of data sets prove that the proposed algorithm can get a better attribute reduction and further make the NMGRS more pervasive and practical.","PeriodicalId":415445,"journal":{"name":"2013 IEEE International Conference on Granular Computing (GrC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An introduction to the variable neighborhood and the related adaptive determination algorithm\",\"authors\":\"Fang Wang, Wei Pan, Lifeng Wu, Yong Guan\",\"doi\":\"10.1109/GrC.2013.6740430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neighborhood-based multi-granulations rough set (NMGRS) is the latest extended model of the multi-granulations rough set (MGRS), which makes the MGRS can deal with real-value data. As one of the most important parameters, the neighborhood size has a significant impact on attribute reduction. However, the common methods to get a neighborhood size rely on keeping trying different values and experiences. And all the attributes are assigned the same value, which ignores their differences on the distribution and the contribution to the decision. Therefore, this paper proposes a new algorithm which assigns adaptively different attributes different neighborhood sizes (it is defined as the variable neighborhood) according to the data distributions. The minimal between class distances of each attribute is regarded as a very important indicator to form such a neighborhood size. The results of experiments on different types of data sets prove that the proposed algorithm can get a better attribute reduction and further make the NMGRS more pervasive and practical.\",\"PeriodicalId\":415445,\"journal\":{\"name\":\"2013 IEEE International Conference on Granular Computing (GrC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Granular Computing (GrC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GrC.2013.6740430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Granular Computing (GrC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GrC.2013.6740430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于邻域的多粒粗糙集(NMGRS)是多粒粗糙集(MGRS)的最新扩展模型,使其能够处理实值数据。邻域大小作为最重要的参数之一,对属性约简有重要影响。然而,获得邻域大小的常用方法依赖于不断尝试不同的值和经验。所有的属性都被赋予相同的值,忽略了它们在分布和对决策的贡献上的差异。因此,本文提出了一种新的算法,根据数据分布自适应地为不同属性分配不同邻域大小(定义为可变邻域)。每个属性的类距离之间的最小值被认为是形成邻域大小的一个非常重要的指标。在不同类型数据集上的实验结果表明,该算法能获得较好的属性约简效果,进一步提高了NMGRS的普适性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An introduction to the variable neighborhood and the related adaptive determination algorithm
The neighborhood-based multi-granulations rough set (NMGRS) is the latest extended model of the multi-granulations rough set (MGRS), which makes the MGRS can deal with real-value data. As one of the most important parameters, the neighborhood size has a significant impact on attribute reduction. However, the common methods to get a neighborhood size rely on keeping trying different values and experiences. And all the attributes are assigned the same value, which ignores their differences on the distribution and the contribution to the decision. Therefore, this paper proposes a new algorithm which assigns adaptively different attributes different neighborhood sizes (it is defined as the variable neighborhood) according to the data distributions. The minimal between class distances of each attribute is regarded as a very important indicator to form such a neighborhood size. The results of experiments on different types of data sets prove that the proposed algorithm can get a better attribute reduction and further make the NMGRS more pervasive and practical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信