基于U-net及其变体的遥感图像语义分割:信息与通信新技术会议(NTIC 2022)

Koko Sarra, Aissa Boulmerka
{"title":"基于U-net及其变体的遥感图像语义分割:信息与通信新技术会议(NTIC 2022)","authors":"Koko Sarra, Aissa Boulmerka","doi":"10.1109/NTIC55069.2022.10100581","DOIUrl":null,"url":null,"abstract":"The process of dividing aerial images into distinct segments based on their semantic content is a crucial aspect of computer vision research that has numerous real-world applications, including disaster monitoring, land mapping, weather forecasting, and agriculture. This work provides a comprehensive overview of the methods used for semantic segmentation of aerial images and how deep neural networks, especially convolutional neural networks and the U-net architecture, can be employed to achieve this. The methods discussed are trained on aerial image datasets, with the results demonstrating the effectiveness of using U-net and its variations for semantic segmentation of aerial imagery.","PeriodicalId":403927,"journal":{"name":"2022 2nd International Conference on New Technologies of Information and Communication (NTIC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Semantic segmentation of remote sensing images using U-net and its variants : Conference New Technologies of Information and Communication (NTIC 2022)\",\"authors\":\"Koko Sarra, Aissa Boulmerka\",\"doi\":\"10.1109/NTIC55069.2022.10100581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of dividing aerial images into distinct segments based on their semantic content is a crucial aspect of computer vision research that has numerous real-world applications, including disaster monitoring, land mapping, weather forecasting, and agriculture. This work provides a comprehensive overview of the methods used for semantic segmentation of aerial images and how deep neural networks, especially convolutional neural networks and the U-net architecture, can be employed to achieve this. The methods discussed are trained on aerial image datasets, with the results demonstrating the effectiveness of using U-net and its variations for semantic segmentation of aerial imagery.\",\"PeriodicalId\":403927,\"journal\":{\"name\":\"2022 2nd International Conference on New Technologies of Information and Communication (NTIC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on New Technologies of Information and Communication (NTIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NTIC55069.2022.10100581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on New Technologies of Information and Communication (NTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTIC55069.2022.10100581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于语义内容将航空图像划分为不同部分的过程是计算机视觉研究的一个关键方面,它具有许多实际应用,包括灾害监测、土地测绘、天气预报和农业。这项工作提供了用于航空图像语义分割的方法的全面概述,以及如何使用深度神经网络,特别是卷积神经网络和U-net架构来实现这一目标。所讨论的方法在航空图像数据集上进行了训练,结果证明了使用U-net及其变体进行航空图像语义分割的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic segmentation of remote sensing images using U-net and its variants : Conference New Technologies of Information and Communication (NTIC 2022)
The process of dividing aerial images into distinct segments based on their semantic content is a crucial aspect of computer vision research that has numerous real-world applications, including disaster monitoring, land mapping, weather forecasting, and agriculture. This work provides a comprehensive overview of the methods used for semantic segmentation of aerial images and how deep neural networks, especially convolutional neural networks and the U-net architecture, can be employed to achieve this. The methods discussed are trained on aerial image datasets, with the results demonstrating the effectiveness of using U-net and its variations for semantic segmentation of aerial imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信