快速2D双手追踪与清晰的运动预测

Hye-Jin Kim, Keun-Chang Kwak, Jaeyeon Lee
{"title":"快速2D双手追踪与清晰的运动预测","authors":"Hye-Jin Kim, Keun-Chang Kwak, Jaeyeon Lee","doi":"10.1109/ICACT.2006.205961","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel real-time hand tracking algorithm in the presence of occlusion. For this purpose, we construct a limb model and maintain the model obtained from AR-KLT methods with respect to second-order auto-regression model and Kanade-Lucas-Tomasi(KLT) features, respectively. Furthermore, this method do not require to categorize types of superimposed hand motion based on directivity obtained by the slope's direction of KLT regression. Thus, we can develop a method of hand tracking for gesture and activity recognition techniques frequently used in conjunction with human-robot interaction (HRI) components. The experimental results show that the proposed method yields a good performance in the intelligent service robots, so called WEVER developed in ETRI","PeriodicalId":247315,"journal":{"name":"2006 8th International Conference Advanced Communication Technology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast 2D both handstracking with articulate motion prediction\",\"authors\":\"Hye-Jin Kim, Keun-Chang Kwak, Jaeyeon Lee\",\"doi\":\"10.1109/ICACT.2006.205961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel real-time hand tracking algorithm in the presence of occlusion. For this purpose, we construct a limb model and maintain the model obtained from AR-KLT methods with respect to second-order auto-regression model and Kanade-Lucas-Tomasi(KLT) features, respectively. Furthermore, this method do not require to categorize types of superimposed hand motion based on directivity obtained by the slope's direction of KLT regression. Thus, we can develop a method of hand tracking for gesture and activity recognition techniques frequently used in conjunction with human-robot interaction (HRI) components. The experimental results show that the proposed method yields a good performance in the intelligent service robots, so called WEVER developed in ETRI\",\"PeriodicalId\":247315,\"journal\":{\"name\":\"2006 8th International Conference Advanced Communication Technology\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 8th International Conference Advanced Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACT.2006.205961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 8th International Conference Advanced Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACT.2006.205961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种遮挡下的手部实时跟踪算法。为此,我们构建了一个肢体模型,并分别针对二阶自回归模型和Kanade-Lucas-Tomasi(KLT)特征对AR-KLT方法得到的模型进行了维护。此外,该方法不需要根据KLT回归的斜率方向获得的指向性对叠加的手部运动类型进行分类。因此,我们可以开发一种手部跟踪方法,用于经常与人机交互(HRI)组件一起使用的手势和活动识别技术。实验结果表明,该方法在ETRI开发的智能服务机器人WEVER中具有良好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast 2D both handstracking with articulate motion prediction
This paper proposes a novel real-time hand tracking algorithm in the presence of occlusion. For this purpose, we construct a limb model and maintain the model obtained from AR-KLT methods with respect to second-order auto-regression model and Kanade-Lucas-Tomasi(KLT) features, respectively. Furthermore, this method do not require to categorize types of superimposed hand motion based on directivity obtained by the slope's direction of KLT regression. Thus, we can develop a method of hand tracking for gesture and activity recognition techniques frequently used in conjunction with human-robot interaction (HRI) components. The experimental results show that the proposed method yields a good performance in the intelligent service robots, so called WEVER developed in ETRI
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信