基于文本和社会数据的多任务弱学习者应用

J. Faddoul, Boris Chidlovskii, Fabien Torre, Rémi Gilleron
{"title":"基于文本和社会数据的多任务弱学习者应用","authors":"J. Faddoul, Boris Chidlovskii, Fabien Torre, Rémi Gilleron","doi":"10.1109/ICMLA.2010.61","DOIUrl":null,"url":null,"abstract":"Learning multiple related tasks from data simultaneously can improve predictive performance relative to learning these tasks independently. In this paper we propose a novel multi-task learning algorithm called MT-Adaboost: it extends Adaboost algorithm Freund1999Short to the multi-task setting, it uses as multi-task weak classifier a multi-task decision stump. This allows to learn different dependencies between tasks for different regions of the learning space. Thus, we relax the conventional hypothesis that tasks behave similarly in the whole learning space. Moreover, MT-Adaboost can learn multiple tasks without imposing the constraint of sharing the same label set and/or examples between tasks. A theoretical analysis is derived from the analysis of the original Adaboost. Experiments for multiple tasks over large scale textual data sets with social context (Enron and Tobacco) give rise to very promising results.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Boosting Multi-Task Weak Learners with Applications to Textual and Social Data\",\"authors\":\"J. Faddoul, Boris Chidlovskii, Fabien Torre, Rémi Gilleron\",\"doi\":\"10.1109/ICMLA.2010.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning multiple related tasks from data simultaneously can improve predictive performance relative to learning these tasks independently. In this paper we propose a novel multi-task learning algorithm called MT-Adaboost: it extends Adaboost algorithm Freund1999Short to the multi-task setting, it uses as multi-task weak classifier a multi-task decision stump. This allows to learn different dependencies between tasks for different regions of the learning space. Thus, we relax the conventional hypothesis that tasks behave similarly in the whole learning space. Moreover, MT-Adaboost can learn multiple tasks without imposing the constraint of sharing the same label set and/or examples between tasks. A theoretical analysis is derived from the analysis of the original Adaboost. Experiments for multiple tasks over large scale textual data sets with social context (Enron and Tobacco) give rise to very promising results.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

相对于单独学习这些任务,同时从数据中学习多个相关任务可以提高预测性能。本文提出了一种新的多任务学习算法MT-Adaboost:它将Adaboost算法Freund1999Short扩展到多任务设置,使用多任务决策残桩作为多任务弱分类器。这允许在学习空间的不同区域学习任务之间的不同依赖关系。因此,我们放宽了传统的假设,即任务在整个学习空间中的行为相似。此外,MT-Adaboost可以学习多个任务,而不需要在任务之间共享相同的标签集和/或示例。理论分析来源于对Adaboost的原始分析。在具有社会背景的大规模文本数据集(安然和烟草)上进行的多任务实验产生了非常有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting Multi-Task Weak Learners with Applications to Textual and Social Data
Learning multiple related tasks from data simultaneously can improve predictive performance relative to learning these tasks independently. In this paper we propose a novel multi-task learning algorithm called MT-Adaboost: it extends Adaboost algorithm Freund1999Short to the multi-task setting, it uses as multi-task weak classifier a multi-task decision stump. This allows to learn different dependencies between tasks for different regions of the learning space. Thus, we relax the conventional hypothesis that tasks behave similarly in the whole learning space. Moreover, MT-Adaboost can learn multiple tasks without imposing the constraint of sharing the same label set and/or examples between tasks. A theoretical analysis is derived from the analysis of the original Adaboost. Experiments for multiple tasks over large scale textual data sets with social context (Enron and Tobacco) give rise to very promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信