离散对数不动点估计数误差的分布

Joshua Holden
{"title":"离散对数不动点估计数误差的分布","authors":"Joshua Holden","doi":"10.1145/1060328.1060329","DOIUrl":null,"url":null,"abstract":"Brizolis asked the question: does every prime p have a pair (g, h) such that h is a fixed point for the discrete logarithm with base g? This author and Pieter Moree, building on work of Zhang, Cobeli, and Zaharescu, gave heuristics for estimating the number of such pairs and proved bounds on the error in the estimates. These bounds are not descriptive of the true situation, however, and this paper is a first attempt to collect and analyze some data on the distribution of the actual error in the estimates.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distribution of the error in estimated numbers of fixed points of the discrete logarithm\",\"authors\":\"Joshua Holden\",\"doi\":\"10.1145/1060328.1060329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brizolis asked the question: does every prime p have a pair (g, h) such that h is a fixed point for the discrete logarithm with base g? This author and Pieter Moree, building on work of Zhang, Cobeli, and Zaharescu, gave heuristics for estimating the number of such pairs and proved bounds on the error in the estimates. These bounds are not descriptive of the true situation, however, and this paper is a first attempt to collect and analyze some data on the distribution of the actual error in the estimates.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1060328.1060329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1060328.1060329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Brizolis提出了一个问题:是否每个素数p都有一对(g, h)使得h是以g为底的离散对数的不动点?本文作者和Pieter Moree在Zhang、Cobeli和Zaharescu的工作基础上,给出了估计这类配对数量的启发式方法,并证明了估计中的误差范围。然而,这些界限并不能描述真实情况,本文是第一次尝试收集和分析一些关于估计中实际误差分布的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution of the error in estimated numbers of fixed points of the discrete logarithm
Brizolis asked the question: does every prime p have a pair (g, h) such that h is a fixed point for the discrete logarithm with base g? This author and Pieter Moree, building on work of Zhang, Cobeli, and Zaharescu, gave heuristics for estimating the number of such pairs and proved bounds on the error in the estimates. These bounds are not descriptive of the true situation, however, and this paper is a first attempt to collect and analyze some data on the distribution of the actual error in the estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信