基于支持向量机的蛋白质b转预测两阶段分类器

Hua-Sheng Chiu, Hsin-Nan Lin, Allan Lo, Ting-Yi Sung, W. Hsu
{"title":"基于支持向量机的蛋白质b转预测两阶段分类器","authors":"Hua-Sheng Chiu, Hsin-Nan Lin, Allan Lo, Ting-Yi Sung, W. Hsu","doi":"10.1109/GRC.2006.1635907","DOIUrl":null,"url":null,"abstract":"β-turns play an important role in protein structures not only because of their sheer abundance, which is estimated to be approximately 25% of all protein residues, but also because of their significance in high-order structures of proteins. In this study, we introduce a new method of β-turn prediction that uses a two-stage classification scheme and an integrated framework for input features. Ten-fold cross validation based on a benchmark dataset of 426 non-homologue protein chains is used to evaluate our method's performance. The experimental results demon- strate that it achieves substantial improvements over BetaTurn, the current best method. The prediction accuracy, Qtotal, and the Matthews correlation coefficient (MCC) of our approach are 79% and 0.47 respectively, compared to 77% and 0.45 respec- tively for BetaTurn.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Two-stage Classifier for Protein B-turn Prediction Using Support Vector Machines\",\"authors\":\"Hua-Sheng Chiu, Hsin-Nan Lin, Allan Lo, Ting-Yi Sung, W. Hsu\",\"doi\":\"10.1109/GRC.2006.1635907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"β-turns play an important role in protein structures not only because of their sheer abundance, which is estimated to be approximately 25% of all protein residues, but also because of their significance in high-order structures of proteins. In this study, we introduce a new method of β-turn prediction that uses a two-stage classification scheme and an integrated framework for input features. Ten-fold cross validation based on a benchmark dataset of 426 non-homologue protein chains is used to evaluate our method's performance. The experimental results demon- strate that it achieves substantial improvements over BetaTurn, the current best method. The prediction accuracy, Qtotal, and the Matthews correlation coefficient (MCC) of our approach are 79% and 0.47 respectively, compared to 77% and 0.45 respec- tively for BetaTurn.\",\"PeriodicalId\":400997,\"journal\":{\"name\":\"2006 IEEE International Conference on Granular Computing\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2006.1635907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

β-turn在蛋白质结构中发挥重要作用,不仅是因为它们的丰度(估计约占所有蛋白质残基的25%),而且还因为它们在蛋白质的高阶结构中具有重要意义。在本研究中,我们引入了一种新的β-turn预测方法,该方法使用两阶段分类方案和输入特征的集成框架。基于426个非同源蛋白链的基准数据集,使用十倍交叉验证来评估我们的方法的性能。实验结果表明,该方法比目前最好的BetaTurn方法有了很大的改进。该方法的预测精度、Qtotal和Matthews相关系数(MCC)分别为79%和0.47,而BetaTurn的预测精度分别为77%和0.45。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Two-stage Classifier for Protein B-turn Prediction Using Support Vector Machines
β-turns play an important role in protein structures not only because of their sheer abundance, which is estimated to be approximately 25% of all protein residues, but also because of their significance in high-order structures of proteins. In this study, we introduce a new method of β-turn prediction that uses a two-stage classification scheme and an integrated framework for input features. Ten-fold cross validation based on a benchmark dataset of 426 non-homologue protein chains is used to evaluate our method's performance. The experimental results demon- strate that it achieves substantial improvements over BetaTurn, the current best method. The prediction accuracy, Qtotal, and the Matthews correlation coefficient (MCC) of our approach are 79% and 0.47 respectively, compared to 77% and 0.45 respec- tively for BetaTurn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信