基于0-1二次优化的稳定集和着色界

Dunja Pucher, F. Rendl
{"title":"基于0-1二次优化的稳定集和着色界","authors":"Dunja Pucher, F. Rendl","doi":"10.23952/asvao.5.2023.2.08","DOIUrl":null,"url":null,"abstract":"We consider semidefinite relaxations of Stable-Set and Coloring, which are based on quadratic 0-1 optimization. Information about the stability number and the chromatic number is hidden in the objective function. This leads to simplified relaxations which depend mostly on the number of vertices of the graph. We also propose tightenings of the relaxations which are based on the maximal cliques of the underlying graph. Computational results on graphs from the literature show the strong potential of this new approach.","PeriodicalId":362333,"journal":{"name":"Applied Set-Valued Analysis and Optimization","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable-set and coloring bounds based on 0-1 quadratic optimization\",\"authors\":\"Dunja Pucher, F. Rendl\",\"doi\":\"10.23952/asvao.5.2023.2.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider semidefinite relaxations of Stable-Set and Coloring, which are based on quadratic 0-1 optimization. Information about the stability number and the chromatic number is hidden in the objective function. This leads to simplified relaxations which depend mostly on the number of vertices of the graph. We also propose tightenings of the relaxations which are based on the maximal cliques of the underlying graph. Computational results on graphs from the literature show the strong potential of this new approach.\",\"PeriodicalId\":362333,\"journal\":{\"name\":\"Applied Set-Valued Analysis and Optimization\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Set-Valued Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23952/asvao.5.2023.2.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Set-Valued Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/asvao.5.2023.2.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑基于二次0-1优化的稳定集和着色的半定松弛。关于稳定性数和色数的信息隐藏在目标函数中。这导致了简化的松弛,这主要取决于图的顶点数量。我们还提出了基于底层图的最大团的松弛的收紧。从文献中得到的图形计算结果显示了这种新方法的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable-set and coloring bounds based on 0-1 quadratic optimization
We consider semidefinite relaxations of Stable-Set and Coloring, which are based on quadratic 0-1 optimization. Information about the stability number and the chromatic number is hidden in the objective function. This leads to simplified relaxations which depend mostly on the number of vertices of the graph. We also propose tightenings of the relaxations which are based on the maximal cliques of the underlying graph. Computational results on graphs from the literature show the strong potential of this new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信