自我网络分析的全局和局部特征学习

Fatemeh Salehi Rizi, M. Granitzer, Konstantin Ziegler
{"title":"自我网络分析的全局和局部特征学习","authors":"Fatemeh Salehi Rizi, M. Granitzer, Konstantin Ziegler","doi":"10.1109/DEXA.2017.36","DOIUrl":null,"url":null,"abstract":"In an ego-network, an individual (ego) organizes its friends (alters) in different groups (social circles). This social network can be efficiently analyzed after learning representations of the ego and its alters in a low-dimensional, real vector space. These representations are then easily exploited via statistical models for tasks such as social circle detection and prediction. Recent advances in language modeling via deep learning have inspired new methods for learning network representations. These methods can capture the global structure of networks. In this paper, we evolve these techniques to also encode the local structure of neighborhoods. Therefore, our local representations capture network features that are hidden in the global representation of large networks. We show that the task of social circle prediction benefits from a combination of global and local features generated by our technique.","PeriodicalId":127009,"journal":{"name":"2017 28th International Workshop on Database and Expert Systems Applications (DEXA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Global and Local Feature Learning for Ego-Network Analysis\",\"authors\":\"Fatemeh Salehi Rizi, M. Granitzer, Konstantin Ziegler\",\"doi\":\"10.1109/DEXA.2017.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an ego-network, an individual (ego) organizes its friends (alters) in different groups (social circles). This social network can be efficiently analyzed after learning representations of the ego and its alters in a low-dimensional, real vector space. These representations are then easily exploited via statistical models for tasks such as social circle detection and prediction. Recent advances in language modeling via deep learning have inspired new methods for learning network representations. These methods can capture the global structure of networks. In this paper, we evolve these techniques to also encode the local structure of neighborhoods. Therefore, our local representations capture network features that are hidden in the global representation of large networks. We show that the task of social circle prediction benefits from a combination of global and local features generated by our technique.\",\"PeriodicalId\":127009,\"journal\":{\"name\":\"2017 28th International Workshop on Database and Expert Systems Applications (DEXA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 28th International Workshop on Database and Expert Systems Applications (DEXA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEXA.2017.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 28th International Workshop on Database and Expert Systems Applications (DEXA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2017.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在自我网络中,个体(自我)在不同的群体(社交圈)中组织自己的朋友(改变者)。在学习了自我及其在低维实向量空间中的变化的表征后,可以有效地分析这个社会网络。然后,这些表征很容易通过统计模型用于社交圈检测和预测等任务。通过深度学习的语言建模的最新进展激发了学习网络表示的新方法。这些方法可以捕获网络的全局结构。在本文中,我们改进了这些技术来编码邻域的局部结构。因此,我们的局部表示捕获了隐藏在大型网络的全局表示中的网络特征。我们表明,社交圈预测任务受益于我们的技术生成的全局和局部特征的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global and Local Feature Learning for Ego-Network Analysis
In an ego-network, an individual (ego) organizes its friends (alters) in different groups (social circles). This social network can be efficiently analyzed after learning representations of the ego and its alters in a low-dimensional, real vector space. These representations are then easily exploited via statistical models for tasks such as social circle detection and prediction. Recent advances in language modeling via deep learning have inspired new methods for learning network representations. These methods can capture the global structure of networks. In this paper, we evolve these techniques to also encode the local structure of neighborhoods. Therefore, our local representations capture network features that are hidden in the global representation of large networks. We show that the task of social circle prediction benefits from a combination of global and local features generated by our technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信