一种新的基于fisher准则的人脸识别方法

Chu Zhang, Wen-Sheng Chen
{"title":"一种新的基于fisher准则的人脸识别方法","authors":"Chu Zhang, Wen-Sheng Chen","doi":"10.1109/ICWAPR.2013.6599287","DOIUrl":null,"url":null,"abstract":"Traditional Fisher linear discriminant analysis (FLDA) method is a promising algorithm for face recognition. However, FLDA does not utilize the geometric distribution information of the training face data, which will degrade its performance. In order to enhance the discriminant power of FLDA, this paper proposes a novel Fisher criterion by using geometric distribution information of the training samples. The geometric distribution information based LDA (GLDA) algorithm is then developed for face recognition. The proposed GLDA approach has been evaluated with two publicly available face databases, namely ORL and FERET databases. Experimental results demonstrate the effectiveness of our GLDA approach.","PeriodicalId":236156,"journal":{"name":"2013 International Conference on Wavelet Analysis and Pattern Recognition","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel fisher criterion based approach for face recognition\",\"authors\":\"Chu Zhang, Wen-Sheng Chen\",\"doi\":\"10.1109/ICWAPR.2013.6599287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional Fisher linear discriminant analysis (FLDA) method is a promising algorithm for face recognition. However, FLDA does not utilize the geometric distribution information of the training face data, which will degrade its performance. In order to enhance the discriminant power of FLDA, this paper proposes a novel Fisher criterion by using geometric distribution information of the training samples. The geometric distribution information based LDA (GLDA) algorithm is then developed for face recognition. The proposed GLDA approach has been evaluated with two publicly available face databases, namely ORL and FERET databases. Experimental results demonstrate the effectiveness of our GLDA approach.\",\"PeriodicalId\":236156,\"journal\":{\"name\":\"2013 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"194 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2013.6599287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2013.6599287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传统的Fisher线性判别分析(FLDA)方法是一种很有前途的人脸识别算法。然而,FLDA没有利用训练人脸数据的几何分布信息,这将降低其性能。为了提高FLDA的判别能力,本文利用训练样本的几何分布信息,提出了一种新的Fisher准则。在此基础上,提出了基于几何分布信息的LDA (GLDA)算法。采用两个公开的人脸数据库(ORL和FERET数据库)对所提出的GLDA方法进行了评估。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel fisher criterion based approach for face recognition
Traditional Fisher linear discriminant analysis (FLDA) method is a promising algorithm for face recognition. However, FLDA does not utilize the geometric distribution information of the training face data, which will degrade its performance. In order to enhance the discriminant power of FLDA, this paper proposes a novel Fisher criterion by using geometric distribution information of the training samples. The geometric distribution information based LDA (GLDA) algorithm is then developed for face recognition. The proposed GLDA approach has been evaluated with two publicly available face databases, namely ORL and FERET databases. Experimental results demonstrate the effectiveness of our GLDA approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信