低密度格的多样性

Mayur Punekar, J. Boutros
{"title":"低密度格的多样性","authors":"Mayur Punekar, J. Boutros","doi":"10.1109/ICT.2015.7124696","DOIUrl":null,"url":null,"abstract":"We describe full-diversity constructions of real lattices defined by their integer-check matrix, i.e. the inverse of their generator matrix. In the first construction suited to maximum-likelihood decoding, these lattices are defined by sparse (low-density) or non-sparse integer-check matrices. Based on a special structure of the lattice binary image, a second full-diversity lattice construction is described for sparse integer-check matrices in the context of iterative probabilistic decoding. Full diversity is theoretically proved in both cases. Computer simulation results also confirm that the proposed low-density lattices attain the maximal diversity order.","PeriodicalId":375669,"journal":{"name":"2015 22nd International Conference on Telecommunications (ICT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diversity of low-density lattices\",\"authors\":\"Mayur Punekar, J. Boutros\",\"doi\":\"10.1109/ICT.2015.7124696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe full-diversity constructions of real lattices defined by their integer-check matrix, i.e. the inverse of their generator matrix. In the first construction suited to maximum-likelihood decoding, these lattices are defined by sparse (low-density) or non-sparse integer-check matrices. Based on a special structure of the lattice binary image, a second full-diversity lattice construction is described for sparse integer-check matrices in the context of iterative probabilistic decoding. Full diversity is theoretically proved in both cases. Computer simulation results also confirm that the proposed low-density lattices attain the maximal diversity order.\",\"PeriodicalId\":375669,\"journal\":{\"name\":\"2015 22nd International Conference on Telecommunications (ICT)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 22nd International Conference on Telecommunications (ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2015.7124696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 22nd International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2015.7124696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们描述了实格的全分集构造,由它们的整数校验矩阵定义,即它们的生成矩阵的逆。在适合最大似然解码的第一种结构中,这些格由稀疏(低密度)或非稀疏整数检查矩阵定义。基于格二值图像的特殊结构,描述了迭代概率译码中稀疏整数校验矩阵的第二次全分集格构造。在这两种情况下,理论上都证明了充分的多样性。计算机仿真结果也证实了所提出的低密度晶格达到了最大的分集阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diversity of low-density lattices
We describe full-diversity constructions of real lattices defined by their integer-check matrix, i.e. the inverse of their generator matrix. In the first construction suited to maximum-likelihood decoding, these lattices are defined by sparse (low-density) or non-sparse integer-check matrices. Based on a special structure of the lattice binary image, a second full-diversity lattice construction is described for sparse integer-check matrices in the context of iterative probabilistic decoding. Full diversity is theoretically proved in both cases. Computer simulation results also confirm that the proposed low-density lattices attain the maximal diversity order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信