一种基于AFS理论的加权模糊聚类分析方法

Yanli Zhang, Xiaodong Liu, Xueying Wang
{"title":"一种基于AFS理论的加权模糊聚类分析方法","authors":"Yanli Zhang, Xiaodong Liu, Xueying Wang","doi":"10.1109/HIS.2009.283","DOIUrl":null,"url":null,"abstract":"Abstract—In the framework of AFS(Axiomatic Fuzzy Sets) theory,We propose A novel weight fuzzy clustering algorithm, which is totally different from the traditional clustering algorithm based approaches. The novel weighted fuzzy clustering algorithm has three main advantages: Firstly, the procedures of the proposed algorithm are more transparent and understandable, and the clustering results not only have definite linguistic interpretation,but also have a weight assigned to each attribute in the cluster description to make the weight’s effect on the clustering reflect the importance of the attribute. Secondly, the predefined distance function and objective function are not required, and the cluster number need not be given in advance. Last, the data types of the features can be various data types or sub-preference relations,even human intuition descriptions. To evaluate the performance of the proposed weighted fuzzy clustering algorithm, we consider three well-known benchmark clustering problems–Iris data,Wine data and Wisconsin diagnostic breast cancer data.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Weighted Fuzzy Clustering Analysis Based on AFS Theory\",\"authors\":\"Yanli Zhang, Xiaodong Liu, Xueying Wang\",\"doi\":\"10.1109/HIS.2009.283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract—In the framework of AFS(Axiomatic Fuzzy Sets) theory,We propose A novel weight fuzzy clustering algorithm, which is totally different from the traditional clustering algorithm based approaches. The novel weighted fuzzy clustering algorithm has three main advantages: Firstly, the procedures of the proposed algorithm are more transparent and understandable, and the clustering results not only have definite linguistic interpretation,but also have a weight assigned to each attribute in the cluster description to make the weight’s effect on the clustering reflect the importance of the attribute. Secondly, the predefined distance function and objective function are not required, and the cluster number need not be given in advance. Last, the data types of the features can be various data types or sub-preference relations,even human intuition descriptions. To evaluate the performance of the proposed weighted fuzzy clustering algorithm, we consider three well-known benchmark clustering problems–Iris data,Wine data and Wisconsin diagnostic breast cancer data.\",\"PeriodicalId\":414085,\"journal\":{\"name\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2009.283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:在公理模糊集理论框架下,提出了一种全新的权重模糊聚类算法,它与传统的基于聚类算法的聚类方法完全不同。新型加权模糊聚类算法具有三个主要优点:首先,算法的过程更加透明和可理解,聚类结果不仅具有明确的语言解释,而且在聚类描述中为每个属性赋予了权重,使权重对聚类的影响反映了属性的重要性。其次,不需要预定义的距离函数和目标函数,也不需要预先给出聚类数;最后,特征的数据类型可以是各种数据类型或子偏好关系,甚至是人类的直觉描述。为了评估所提出的加权模糊聚类算法的性能,我们考虑了三个众所周知的基准聚类问题——iris数据、Wine数据和威斯康星州诊断乳腺癌数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Weighted Fuzzy Clustering Analysis Based on AFS Theory
Abstract—In the framework of AFS(Axiomatic Fuzzy Sets) theory,We propose A novel weight fuzzy clustering algorithm, which is totally different from the traditional clustering algorithm based approaches. The novel weighted fuzzy clustering algorithm has three main advantages: Firstly, the procedures of the proposed algorithm are more transparent and understandable, and the clustering results not only have definite linguistic interpretation,but also have a weight assigned to each attribute in the cluster description to make the weight’s effect on the clustering reflect the importance of the attribute. Secondly, the predefined distance function and objective function are not required, and the cluster number need not be given in advance. Last, the data types of the features can be various data types or sub-preference relations,even human intuition descriptions. To evaluate the performance of the proposed weighted fuzzy clustering algorithm, we consider three well-known benchmark clustering problems–Iris data,Wine data and Wisconsin diagnostic breast cancer data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信