三点有理插值中样条函数在半轴上逼近$ \ exp (-x) $

A. Ramazanov, V. Magomedova
{"title":"三点有理插值中样条函数在半轴上逼近$ \\ exp (-x) $","authors":"A. Ramazanov, V. Magomedova","doi":"10.31029/demr.11.4","DOIUrl":null,"url":null,"abstract":"For the function $f(x)=\\exp(-x)$, $x\\in [0,+\\infty)$ on grids of nodes $\\Delta: 0=x_0<x_1<\\dots $ with $x_n\\to +\\infty$ we construct rational spline-functions such that $R_k(x,f, \\Delta)=R_i(x,f)A_{i,k}(x)\\linebreak+R_{i-1}(x, f)B_{i,k}(x)$ for $x\\in[x_{i-1}, x_i]$ $(i=1,2,\\dots)$ and $k=1,2,\\dots$ Here $A_{i,k}(x)=(x-x_{i-1})^k/((x-x_{i-1})^k+(x_i-x)^k)$, $B_{i,k}(x)=1-A_{i,k}(x)$, $R_j(x,f)=\\alpha_j+\\beta_j(x-x_j)+\\gamma_j/(x+1)$ $(j=1,2,\\dots)$, $R_j(x_m,f)=f(x_m)$ при $m=j-1,j,j+1$; we take $R_0(x,f)\\equiv R_1(x,f)$.\n\nBounds for the convergence rate of $R_k(x,f, \\Delta)$ with $f(x)=\\exp(-x)$, $x\\in [0,+\\infty)$, are found.","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the approximation of $ \\\\ exp (-x) $ on the half-axis by spline functions in three-point rational interpolants\",\"authors\":\"A. Ramazanov, V. Magomedova\",\"doi\":\"10.31029/demr.11.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the function $f(x)=\\\\exp(-x)$, $x\\\\in [0,+\\\\infty)$ on grids of nodes $\\\\Delta: 0=x_0<x_1<\\\\dots $ with $x_n\\\\to +\\\\infty$ we construct rational spline-functions such that $R_k(x,f, \\\\Delta)=R_i(x,f)A_{i,k}(x)\\\\linebreak+R_{i-1}(x, f)B_{i,k}(x)$ for $x\\\\in[x_{i-1}, x_i]$ $(i=1,2,\\\\dots)$ and $k=1,2,\\\\dots$ Here $A_{i,k}(x)=(x-x_{i-1})^k/((x-x_{i-1})^k+(x_i-x)^k)$, $B_{i,k}(x)=1-A_{i,k}(x)$, $R_j(x,f)=\\\\alpha_j+\\\\beta_j(x-x_j)+\\\\gamma_j/(x+1)$ $(j=1,2,\\\\dots)$, $R_j(x_m,f)=f(x_m)$ при $m=j-1,j,j+1$; we take $R_0(x,f)\\\\equiv R_1(x,f)$.\\n\\nBounds for the convergence rate of $R_k(x,f, \\\\Delta)$ with $f(x)=\\\\exp(-x)$, $x\\\\in [0,+\\\\infty)$, are found.\",\"PeriodicalId\":431345,\"journal\":{\"name\":\"Daghestan Electronic Mathematical Reports\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daghestan Electronic Mathematical Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31029/demr.11.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.11.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于函数 $f(x)=\exp(-x)$, $x\in [0,+\infty)$ 关于节点的网格 $\Delta: 0=x_0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
On the approximation of $ \ exp (-x) $ on the half-axis by spline functions in three-point rational interpolants
For the function $f(x)=\exp(-x)$, $x\in [0,+\infty)$ on grids of nodes $\Delta: 0=x_0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信