基于拓扑变形和聚类的局部异构分散学习优化

Waqwoya Abebe, A. Jannesari
{"title":"基于拓扑变形和聚类的局部异构分散学习优化","authors":"Waqwoya Abebe, A. Jannesari","doi":"10.1109/CCGrid57682.2023.00041","DOIUrl":null,"url":null,"abstract":"Recently, local peer topology has been shown to influence the overall convergence of decentralized learning (DL) graphs in the presence of data heterogeneity. In this paper, we demonstrate the advantages of constructing a proxy-based locally heterogeneous DL topology to enhance convergence and maintain data privacy. In particular, we propose a novel peer clumping strategy to efficiently cluster peers before arranging them in a final training graph. By showing how locally heterogeneous graphs outperform locally homogeneous graphs of similar size and from the same global data distribution, we present a strong case for topological pre-processing. Moreover, we demonstrate the scalability of our approach by showing how the proposed topological pre-processing overhead remains small in large graphs while the performance gains get even more pronounced. Furthermore, we show the robustness of our approach in the presence of network partitions.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Decentralized Learning with Local Heterogeneity using Topology Morphing and Clustering\",\"authors\":\"Waqwoya Abebe, A. Jannesari\",\"doi\":\"10.1109/CCGrid57682.2023.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, local peer topology has been shown to influence the overall convergence of decentralized learning (DL) graphs in the presence of data heterogeneity. In this paper, we demonstrate the advantages of constructing a proxy-based locally heterogeneous DL topology to enhance convergence and maintain data privacy. In particular, we propose a novel peer clumping strategy to efficiently cluster peers before arranging them in a final training graph. By showing how locally heterogeneous graphs outperform locally homogeneous graphs of similar size and from the same global data distribution, we present a strong case for topological pre-processing. Moreover, we demonstrate the scalability of our approach by showing how the proposed topological pre-processing overhead remains small in large graphs while the performance gains get even more pronounced. Furthermore, we show the robustness of our approach in the presence of network partitions.\",\"PeriodicalId\":363806,\"journal\":{\"name\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid57682.2023.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,局部对等拓扑已被证明在存在数据异构的情况下影响分散学习(DL)图的整体收敛性。在本文中,我们展示了构建基于代理的本地异构DL拓扑的优点,以增强收敛性并维护数据隐私。特别地,我们提出了一种新的对等聚类策略,在最终的训练图中排列它们之前有效地聚类。通过展示局部异构图如何优于大小相似且来自相同全局数据分布的局部同构图,我们提出了拓扑预处理的有力案例。此外,我们通过展示所建议的拓扑预处理开销如何在大型图中保持较小,而性能增益如何更加明显,来演示我们方法的可伸缩性。此外,我们还展示了在存在网络分区的情况下我们的方法的健壮性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Decentralized Learning with Local Heterogeneity using Topology Morphing and Clustering
Recently, local peer topology has been shown to influence the overall convergence of decentralized learning (DL) graphs in the presence of data heterogeneity. In this paper, we demonstrate the advantages of constructing a proxy-based locally heterogeneous DL topology to enhance convergence and maintain data privacy. In particular, we propose a novel peer clumping strategy to efficiently cluster peers before arranging them in a final training graph. By showing how locally heterogeneous graphs outperform locally homogeneous graphs of similar size and from the same global data distribution, we present a strong case for topological pre-processing. Moreover, we demonstrate the scalability of our approach by showing how the proposed topological pre-processing overhead remains small in large graphs while the performance gains get even more pronounced. Furthermore, we show the robustness of our approach in the presence of network partitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信