{"title":"非半单不变量和Habiro级数","authors":"A. Beliakova, K. Hikami","doi":"10.4171/irma/33-1/10","DOIUrl":null,"url":null,"abstract":"In this paper we establish an explicit relationship between Habiro's cyclotomic expansion of the colored Jones polynomial (evaluated at a p-th root of unity) and the Akutsu-Deguchi-Ohtsuki (ADO) invariants of the double twist knots. This allows us to compare the Witten-Reshetikhin-Turaev (WRT) and Costantino-Geer-Patureau (CGP) invariants of 3-manifolds obtained by 0-surgery on these knots. The difference between them is determined by the p-1 coefficient of the Habiro series. We expect these to hold for all Seifert genus 1 knots.","PeriodicalId":270093,"journal":{"name":"Topology and Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Non-semisimple invariants and Habiro’s series\",\"authors\":\"A. Beliakova, K. Hikami\",\"doi\":\"10.4171/irma/33-1/10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we establish an explicit relationship between Habiro's cyclotomic expansion of the colored Jones polynomial (evaluated at a p-th root of unity) and the Akutsu-Deguchi-Ohtsuki (ADO) invariants of the double twist knots. This allows us to compare the Witten-Reshetikhin-Turaev (WRT) and Costantino-Geer-Patureau (CGP) invariants of 3-manifolds obtained by 0-surgery on these knots. The difference between them is determined by the p-1 coefficient of the Habiro series. We expect these to hold for all Seifert genus 1 knots.\",\"PeriodicalId\":270093,\"journal\":{\"name\":\"Topology and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/irma/33-1/10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/irma/33-1/10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we establish an explicit relationship between Habiro's cyclotomic expansion of the colored Jones polynomial (evaluated at a p-th root of unity) and the Akutsu-Deguchi-Ohtsuki (ADO) invariants of the double twist knots. This allows us to compare the Witten-Reshetikhin-Turaev (WRT) and Costantino-Geer-Patureau (CGP) invariants of 3-manifolds obtained by 0-surgery on these knots. The difference between them is determined by the p-1 coefficient of the Habiro series. We expect these to hold for all Seifert genus 1 knots.