基于内在时间尺度的社交网络动态社区检测与可视化研究

A. Albano, Jean-Loup Guillaume, B. L. Grand
{"title":"基于内在时间尺度的社交网络动态社区检测与可视化研究","authors":"A. Albano, Jean-Loup Guillaume, B. L. Grand","doi":"10.1109/RCIS.2014.6861033","DOIUrl":null,"url":null,"abstract":"The analysis of social networks is a challenging research area, in particular because of their dynamic features. In this paper, we study such evolving graphs through the evolution of their community structure. More specifically, we build on existing approaches for the identification of stable communities over time. This paper presents two contributions.We first propose a new way to compute such stable communities, using a different time scale, called intrinsic time. This intrinsic time is related to the dynamics of the graph (e.g, in terms of link appearance or disappearance) and independent from traditional (extrinsic) time units, like the second. We then show how visualization both at intrinsic and extrinsic time scales can help validating and interpreting the obtained communities. Our results are illustrated on a social network made of contacts among the participants of the 2006 edition of the Infocom conference.","PeriodicalId":288073,"journal":{"name":"2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the use of intrinsic time scale for dynamic community detection and visualization in social networks\",\"authors\":\"A. Albano, Jean-Loup Guillaume, B. L. Grand\",\"doi\":\"10.1109/RCIS.2014.6861033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of social networks is a challenging research area, in particular because of their dynamic features. In this paper, we study such evolving graphs through the evolution of their community structure. More specifically, we build on existing approaches for the identification of stable communities over time. This paper presents two contributions.We first propose a new way to compute such stable communities, using a different time scale, called intrinsic time. This intrinsic time is related to the dynamics of the graph (e.g, in terms of link appearance or disappearance) and independent from traditional (extrinsic) time units, like the second. We then show how visualization both at intrinsic and extrinsic time scales can help validating and interpreting the obtained communities. Our results are illustrated on a social network made of contacts among the participants of the 2006 edition of the Infocom conference.\",\"PeriodicalId\":288073,\"journal\":{\"name\":\"2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCIS.2014.6861033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2014.6861033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

社交网络的分析是一个具有挑战性的研究领域,特别是因为它的动态特征。本文通过对其群落结构的演化来研究这类演化图。更具体地说,我们建立在现有的方法,以确定稳定的社区随着时间的推移。本文提出了两个贡献。我们首先提出了一种新的方法来计算这种稳定的社区,使用不同的时间尺度,称为固有时间。这个内在时间与图的动态相关(例如,在链接出现或消失方面),并且独立于传统的(外在的)时间单位,如秒。然后,我们展示了内在和外在时间尺度上的可视化如何帮助验证和解释获得的群落。我们的研究结果在2006年Infocom会议参与者的社交网络上得到了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the use of intrinsic time scale for dynamic community detection and visualization in social networks
The analysis of social networks is a challenging research area, in particular because of their dynamic features. In this paper, we study such evolving graphs through the evolution of their community structure. More specifically, we build on existing approaches for the identification of stable communities over time. This paper presents two contributions.We first propose a new way to compute such stable communities, using a different time scale, called intrinsic time. This intrinsic time is related to the dynamics of the graph (e.g, in terms of link appearance or disappearance) and independent from traditional (extrinsic) time units, like the second. We then show how visualization both at intrinsic and extrinsic time scales can help validating and interpreting the obtained communities. Our results are illustrated on a social network made of contacts among the participants of the 2006 edition of the Infocom conference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信