基于拉普拉斯特征向量级联的多尺度几何数据分析

Joshua L. Mike, Jose A. Perea
{"title":"基于拉普拉斯特征向量级联的多尺度几何数据分析","authors":"Joshua L. Mike, Jose A. Perea","doi":"10.1109/ICMLA.2019.00183","DOIUrl":null,"url":null,"abstract":"We develop here an algorithmic framework for constructing consistent multiscale Laplacian eigenfunctions (vectors) on data. Consequently, we address the unsupervised machine learning task of finding scalar functions capturing consistent structure across scales in data, in a way that encodes intrinsic geometric and topological features. This is accomplished by two algorithms for eigenvector cascading. We show via examples that cascading accelerates the computation of graph Laplacian eigenvectors, and more importantly, that one obtains consistent bases of the associated eigenspaces across scales. Finally, we present an application to TDA mapper, showing that our multiscale Laplacian eigenvectors identify stable flair-like structures in mapper graphs of varying granularity.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiscale Geometric Data Analysis via Laplacian Eigenvector Cascading\",\"authors\":\"Joshua L. Mike, Jose A. Perea\",\"doi\":\"10.1109/ICMLA.2019.00183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop here an algorithmic framework for constructing consistent multiscale Laplacian eigenfunctions (vectors) on data. Consequently, we address the unsupervised machine learning task of finding scalar functions capturing consistent structure across scales in data, in a way that encodes intrinsic geometric and topological features. This is accomplished by two algorithms for eigenvector cascading. We show via examples that cascading accelerates the computation of graph Laplacian eigenvectors, and more importantly, that one obtains consistent bases of the associated eigenspaces across scales. Finally, we present an application to TDA mapper, showing that our multiscale Laplacian eigenvectors identify stable flair-like structures in mapper graphs of varying granularity.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们开发了一个算法框架,用于在数据上构造一致的多尺度拉普拉斯特征函数(向量)。因此,我们解决了无监督机器学习任务,即以编码内在几何和拓扑特征的方式,在数据中寻找捕获跨尺度一致结构的标量函数。这是通过两种特征向量级联算法来实现的。我们通过实例表明,级联加速了图拉普拉斯特征向量的计算,更重要的是,人们获得了跨尺度的相关特征空间的一致基。最后,我们给出了一个在TDA映射器上的应用,证明了我们的多尺度拉普拉斯特征向量在不同粒度的映射图中识别出稳定的类形结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Geometric Data Analysis via Laplacian Eigenvector Cascading
We develop here an algorithmic framework for constructing consistent multiscale Laplacian eigenfunctions (vectors) on data. Consequently, we address the unsupervised machine learning task of finding scalar functions capturing consistent structure across scales in data, in a way that encodes intrinsic geometric and topological features. This is accomplished by two algorithms for eigenvector cascading. We show via examples that cascading accelerates the computation of graph Laplacian eigenvectors, and more importantly, that one obtains consistent bases of the associated eigenspaces across scales. Finally, we present an application to TDA mapper, showing that our multiscale Laplacian eigenvectors identify stable flair-like structures in mapper graphs of varying granularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信