低功耗VGA全帧特征提取处理器

Don-Guk Jeon, Yejoong Kim, Inhee Lee, Zhengya Zhang, D. Blaauw, D. Sylvester
{"title":"低功耗VGA全帧特征提取处理器","authors":"Don-Guk Jeon, Yejoong Kim, Inhee Lee, Zhengya Zhang, D. Blaauw, D. Sylvester","doi":"10.1109/ICASSP.2013.6638152","DOIUrl":null,"url":null,"abstract":"This paper proposes an energy-efficient VGA full-frame feature extraction processor design. It is based on the SURF algorithm and makes various algorithmic modifications to improve efficiency and reduce hardware overhead while maintaining extraction performance. Low clock frequency and deep parallelism derived from a one-sample-per-cycle matched-throughput architecture provide significantly larger room for voltage scaling and enables full-frame extraction. The proposed design consumes 4.7mW at 400mV and achieves 72% higher energy efficiency than prior work.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A low-power VGA full-frame feature extraction processor\",\"authors\":\"Don-Guk Jeon, Yejoong Kim, Inhee Lee, Zhengya Zhang, D. Blaauw, D. Sylvester\",\"doi\":\"10.1109/ICASSP.2013.6638152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an energy-efficient VGA full-frame feature extraction processor design. It is based on the SURF algorithm and makes various algorithmic modifications to improve efficiency and reduce hardware overhead while maintaining extraction performance. Low clock frequency and deep parallelism derived from a one-sample-per-cycle matched-throughput architecture provide significantly larger room for voltage scaling and enables full-frame extraction. The proposed design consumes 4.7mW at 400mV and achieves 72% higher energy efficiency than prior work.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6638152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种节能的VGA全帧特征提取处理器设计。它基于SURF算法,并对算法进行了各种修改,以提高效率,减少硬件开销,同时保持提取性能。低时钟频率和深度并行性源于每周期一个采样匹配吞吐量架构,为电压缩放提供了更大的空间,并实现了全帧提取。该设计在400mV时的功耗为4.7mW,比以前的设计节能72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A low-power VGA full-frame feature extraction processor
This paper proposes an energy-efficient VGA full-frame feature extraction processor design. It is based on the SURF algorithm and makes various algorithmic modifications to improve efficiency and reduce hardware overhead while maintaining extraction performance. Low clock frequency and deep parallelism derived from a one-sample-per-cycle matched-throughput architecture provide significantly larger room for voltage scaling and enables full-frame extraction. The proposed design consumes 4.7mW at 400mV and achieves 72% higher energy efficiency than prior work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信