基于掩模区域的卷积神经网络估计鱼的长度

Tzu-Yuan Su, W. W. Hsu, R. Hu, Chia-Chang Tsou, Chun-Han Lin, Wei-Siang Hong
{"title":"基于掩模区域的卷积神经网络估计鱼的长度","authors":"Tzu-Yuan Su, W. W. Hsu, R. Hu, Chia-Chang Tsou, Chun-Han Lin, Wei-Siang Hong","doi":"10.1109/ECICE55674.2022.10042877","DOIUrl":null,"url":null,"abstract":"Extensive research has been conducted on the growth and the biological behaviours which both require the measurement of the fish samples. However, the existing measurement methods were time-consuming and laborintensive. In this research, we developed a faster method based on machine vision and artificial intelligence to measure the fish size and length automatically to support future ecological research.","PeriodicalId":282635,"journal":{"name":"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Fish Length Using Mask Region-Based Convolutional Neural Networks\",\"authors\":\"Tzu-Yuan Su, W. W. Hsu, R. Hu, Chia-Chang Tsou, Chun-Han Lin, Wei-Siang Hong\",\"doi\":\"10.1109/ECICE55674.2022.10042877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensive research has been conducted on the growth and the biological behaviours which both require the measurement of the fish samples. However, the existing measurement methods were time-consuming and laborintensive. In this research, we developed a faster method based on machine vision and artificial intelligence to measure the fish size and length automatically to support future ecological research.\",\"PeriodicalId\":282635,\"journal\":{\"name\":\"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECICE55674.2022.10042877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE55674.2022.10042877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对鱼的生长和生物行为进行了广泛的研究,这两者都需要对鱼的样本进行测量。然而,现有的测量方法耗时且费力。在本研究中,我们开发了一种基于机器视觉和人工智能的更快的方法来自动测量鱼类的大小和长度,为未来的生态研究提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Fish Length Using Mask Region-Based Convolutional Neural Networks
Extensive research has been conducted on the growth and the biological behaviours which both require the measurement of the fish samples. However, the existing measurement methods were time-consuming and laborintensive. In this research, we developed a faster method based on machine vision and artificial intelligence to measure the fish size and length automatically to support future ecological research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信