函数逼近的极限学习机——输入权值和偏差的区间问题

Grzegorz Dudek
{"title":"函数逼近的极限学习机——输入权值和偏差的区间问题","authors":"Grzegorz Dudek","doi":"10.1109/CYBConf.2015.7175907","DOIUrl":null,"url":null,"abstract":"In this article the approximation capability of the extreme learning machine is studied. Specifically the impact of the range from which the input weights and biases are randomly generated on the fitted curve complexity is analyzed. The guidance for how to generate the input weights and biases to get good performance in approximation of the functions of one variable is provided.","PeriodicalId":177233,"journal":{"name":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Extreme learning machine for function approximation - interval problem of input weights and biases\",\"authors\":\"Grzegorz Dudek\",\"doi\":\"10.1109/CYBConf.2015.7175907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article the approximation capability of the extreme learning machine is studied. Specifically the impact of the range from which the input weights and biases are randomly generated on the fitted curve complexity is analyzed. The guidance for how to generate the input weights and biases to get good performance in approximation of the functions of one variable is provided.\",\"PeriodicalId\":177233,\"journal\":{\"name\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBConf.2015.7175907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBConf.2015.7175907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了极限学习机的逼近能力。具体分析了输入权值和偏差随机产生的范围对拟合曲线复杂度的影响。给出了如何生成输入权值和偏差以获得良好的单变量函数逼近性能的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extreme learning machine for function approximation - interval problem of input weights and biases
In this article the approximation capability of the extreme learning machine is studied. Specifically the impact of the range from which the input weights and biases are randomly generated on the fitted curve complexity is analyzed. The guidance for how to generate the input weights and biases to get good performance in approximation of the functions of one variable is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信