数据流计算中有效利用部分重构的框架

Riccardo Cattaneo, Xinyu Niu, C. Pilato, Tobias Becker, W. Luk, M. Santambrogio
{"title":"数据流计算中有效利用部分重构的框架","authors":"Riccardo Cattaneo, Xinyu Niu, C. Pilato, Tobias Becker, W. Luk, M. Santambrogio","doi":"10.1109/ReCoSoC.2013.6581535","DOIUrl":null,"url":null,"abstract":"The exploitation of high-performance architectures based on reconfigurable hardware to build power efficient supercomputing clusters is becoming more and more common. Indeed, large speedups have already been demonstrated in several high-performance computing (HPC) applications. On the other hand, partial reconfiguration (PR) has the potential to further increase performance and power efficiency in many applications; however, there is currently very limited support for transforming a traditional design into a reconfigurable one. In this work, we introduce a design methodology for PR designs that combines application analysis, partitioning, mapping and scheduling, and supports fast exploration of various design options. These steps are integrated in an automated toolchain which allows a designer to implement reconfigurable designs with simple guidance through a graphical interface. We demonstrate our approach by applying the methodology to an image processing application, implementing the proposed design on a Maxeler MaxWorkstation.","PeriodicalId":354964,"journal":{"name":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A framework for effective exploitation of partial reconfiguration in dataflow computing\",\"authors\":\"Riccardo Cattaneo, Xinyu Niu, C. Pilato, Tobias Becker, W. Luk, M. Santambrogio\",\"doi\":\"10.1109/ReCoSoC.2013.6581535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploitation of high-performance architectures based on reconfigurable hardware to build power efficient supercomputing clusters is becoming more and more common. Indeed, large speedups have already been demonstrated in several high-performance computing (HPC) applications. On the other hand, partial reconfiguration (PR) has the potential to further increase performance and power efficiency in many applications; however, there is currently very limited support for transforming a traditional design into a reconfigurable one. In this work, we introduce a design methodology for PR designs that combines application analysis, partitioning, mapping and scheduling, and supports fast exploration of various design options. These steps are integrated in an automated toolchain which allows a designer to implement reconfigurable designs with simple guidance through a graphical interface. We demonstrate our approach by applying the methodology to an image processing application, implementing the proposed design on a Maxeler MaxWorkstation.\",\"PeriodicalId\":354964,\"journal\":{\"name\":\"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReCoSoC.2013.6581535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReCoSoC.2013.6581535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用基于可重构硬件的高性能体系结构来构建高效节能的超级计算集群正变得越来越普遍。事实上,在一些高性能计算(HPC)应用程序中已经证明了大幅提速。另一方面,部分重构(PR)在许多应用中具有进一步提高性能和功率效率的潜力;然而,目前对将传统设计转换为可重构设计的支持非常有限。在这项工作中,我们为PR设计引入了一种设计方法,该方法结合了应用分析、分区、映射和调度,并支持快速探索各种设计选项。这些步骤集成在一个自动化的工具链中,允许设计人员通过图形界面通过简单的指导实现可重构的设计。我们通过将该方法应用于图像处理应用程序来演示我们的方法,并在Maxeler MaxWorkstation上实现了所提出的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework for effective exploitation of partial reconfiguration in dataflow computing
The exploitation of high-performance architectures based on reconfigurable hardware to build power efficient supercomputing clusters is becoming more and more common. Indeed, large speedups have already been demonstrated in several high-performance computing (HPC) applications. On the other hand, partial reconfiguration (PR) has the potential to further increase performance and power efficiency in many applications; however, there is currently very limited support for transforming a traditional design into a reconfigurable one. In this work, we introduce a design methodology for PR designs that combines application analysis, partitioning, mapping and scheduling, and supports fast exploration of various design options. These steps are integrated in an automated toolchain which allows a designer to implement reconfigurable designs with simple guidance through a graphical interface. We demonstrate our approach by applying the methodology to an image processing application, implementing the proposed design on a Maxeler MaxWorkstation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信