基于人工神经网络的印尼电力系统异常STLF分析

Y. Mulyadi, L. Farida, A. Abdullah, K. A. Rohmah
{"title":"基于人工神经网络的印尼电力系统异常STLF分析","authors":"Y. Mulyadi, L. Farida, A. Abdullah, K. A. Rohmah","doi":"10.1109/TICST.2015.7369331","DOIUrl":null,"url":null,"abstract":"This paper presents the research results of Short Term Load Forecasting (STLF) on the power distribution systems in the West Java, Indonesia. Forecasting is executed using Artificial Neural Network (ANN), with back propagation algorithms. Experiments conducted on the data load holidays (anomalous load). To obtain optimal prediction accuracy, then conducted the experiment by changing the number of input learning and learning rate value. The simulation results verify that the ANN method performs more accurate than the conventional method used Indonesia Power Company. Results of this study are expected to be used as an alternative method based on soft computing.","PeriodicalId":251893,"journal":{"name":"2015 International Conference on Science and Technology (TICST)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Anomalous STLF for Indonesia power system using Artificial Neural Network\",\"authors\":\"Y. Mulyadi, L. Farida, A. Abdullah, K. A. Rohmah\",\"doi\":\"10.1109/TICST.2015.7369331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the research results of Short Term Load Forecasting (STLF) on the power distribution systems in the West Java, Indonesia. Forecasting is executed using Artificial Neural Network (ANN), with back propagation algorithms. Experiments conducted on the data load holidays (anomalous load). To obtain optimal prediction accuracy, then conducted the experiment by changing the number of input learning and learning rate value. The simulation results verify that the ANN method performs more accurate than the conventional method used Indonesia Power Company. Results of this study are expected to be used as an alternative method based on soft computing.\",\"PeriodicalId\":251893,\"journal\":{\"name\":\"2015 International Conference on Science and Technology (TICST)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Science and Technology (TICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TICST.2015.7369331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Science and Technology (TICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TICST.2015.7369331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了印尼西爪哇地区配电系统短期负荷预测的研究成果。预测使用人工神经网络(ANN)和反向传播算法执行。对数据负载假日(异常负载)进行了实验。为了获得最优的预测精度,然后通过改变输入学习次数和学习率值来进行实验。仿真结果表明,该方法比印尼电力公司采用的传统方法具有更高的精度。本研究的结果有望作为一种基于软计算的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomalous STLF for Indonesia power system using Artificial Neural Network
This paper presents the research results of Short Term Load Forecasting (STLF) on the power distribution systems in the West Java, Indonesia. Forecasting is executed using Artificial Neural Network (ANN), with back propagation algorithms. Experiments conducted on the data load holidays (anomalous load). To obtain optimal prediction accuracy, then conducted the experiment by changing the number of input learning and learning rate value. The simulation results verify that the ANN method performs more accurate than the conventional method used Indonesia Power Company. Results of this study are expected to be used as an alternative method based on soft computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信