{"title":"184.6 dbc /Hz FoM 100 khz闪烁相位噪声角30 ghz旋转行波振荡器,采用22nm FD-SOI的分布式存根","authors":"M. Shehata, M. Keaveney, R. Staszewski","doi":"10.1109/ESSCIRC.2019.8902916","DOIUrl":null,"url":null,"abstract":"A rotary traveling-wave oscillator (RTWO) has an ability to generate multiple phases at millimeter-wave (mmW) frequencies while achieving low phase noise (PN). Unfortunately, due to transmission line (TL) dispersion, RTWOs suffer from flicker noise upconversion. In this letter, we propose a \"distributed stubs\" technique to mitigate this mechanism. To cancel out phase shifts due to the TL dispersion, we intentionally generate a phase difference between TL modes. The proposed 26.2–30 GHz RTWO is implemented in 22-nm FD-SOI CMOS. At 30 GHz, it achieves PN of − 107 and −128.1 dBc/Hz at 1 and MHz 10 offsets, respectively. This translates into figure-of-merits (FoM) of 183.5 and 184.6 dBc/Hz, respectively. The proposed architecture consumes 20 mW from 0.8-V supply. It achieves a flicker noise corner of 100 kHz, which is an order-of-magnitude better than currently achievable by state-of-the-art mmW RTWOs.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A 184.6-dBc/Hz FoM 100-kHz Flicker Phase Noise Corner 30-GHz Rotary Traveling-Wave Oscillator Using Distributed Stubs in 22-nm FD-SOI\",\"authors\":\"M. Shehata, M. Keaveney, R. Staszewski\",\"doi\":\"10.1109/ESSCIRC.2019.8902916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A rotary traveling-wave oscillator (RTWO) has an ability to generate multiple phases at millimeter-wave (mmW) frequencies while achieving low phase noise (PN). Unfortunately, due to transmission line (TL) dispersion, RTWOs suffer from flicker noise upconversion. In this letter, we propose a \\\"distributed stubs\\\" technique to mitigate this mechanism. To cancel out phase shifts due to the TL dispersion, we intentionally generate a phase difference between TL modes. The proposed 26.2–30 GHz RTWO is implemented in 22-nm FD-SOI CMOS. At 30 GHz, it achieves PN of − 107 and −128.1 dBc/Hz at 1 and MHz 10 offsets, respectively. This translates into figure-of-merits (FoM) of 183.5 and 184.6 dBc/Hz, respectively. The proposed architecture consumes 20 mW from 0.8-V supply. It achieves a flicker noise corner of 100 kHz, which is an order-of-magnitude better than currently achievable by state-of-the-art mmW RTWOs.\",\"PeriodicalId\":402948,\"journal\":{\"name\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2019.8902916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 184.6-dBc/Hz FoM 100-kHz Flicker Phase Noise Corner 30-GHz Rotary Traveling-Wave Oscillator Using Distributed Stubs in 22-nm FD-SOI
A rotary traveling-wave oscillator (RTWO) has an ability to generate multiple phases at millimeter-wave (mmW) frequencies while achieving low phase noise (PN). Unfortunately, due to transmission line (TL) dispersion, RTWOs suffer from flicker noise upconversion. In this letter, we propose a "distributed stubs" technique to mitigate this mechanism. To cancel out phase shifts due to the TL dispersion, we intentionally generate a phase difference between TL modes. The proposed 26.2–30 GHz RTWO is implemented in 22-nm FD-SOI CMOS. At 30 GHz, it achieves PN of − 107 and −128.1 dBc/Hz at 1 and MHz 10 offsets, respectively. This translates into figure-of-merits (FoM) of 183.5 and 184.6 dBc/Hz, respectively. The proposed architecture consumes 20 mW from 0.8-V supply. It achieves a flicker noise corner of 100 kHz, which is an order-of-magnitude better than currently achievable by state-of-the-art mmW RTWOs.