{"title":"关于广义模糊bf -代数","authors":"A. Hadipour","doi":"10.1109/FUZZY.2009.5277295","DOIUrl":null,"url":null,"abstract":"By two reletions belonging to (∊) and quasi-coincidence (q) between fuzzy points and fuzzy sets, we define the concept of (α, β)-fuzzy subalgebras where α, ß are any two of {∊, q, ∊ Vq, ∊ ∧q} with α ≢ ∊ ∧q. We state and prove some theorems in (α, β)-fuzzy BF-algebras.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On generalized fuzzy BF-Algebras\",\"authors\":\"A. Hadipour\",\"doi\":\"10.1109/FUZZY.2009.5277295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By two reletions belonging to (∊) and quasi-coincidence (q) between fuzzy points and fuzzy sets, we define the concept of (α, β)-fuzzy subalgebras where α, ß are any two of {∊, q, ∊ Vq, ∊ ∧q} with α ≢ ∊ ∧q. We state and prove some theorems in (α, β)-fuzzy BF-algebras.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
By two reletions belonging to (∊) and quasi-coincidence (q) between fuzzy points and fuzzy sets, we define the concept of (α, β)-fuzzy subalgebras where α, ß are any two of {∊, q, ∊ Vq, ∊ ∧q} with α ≢ ∊ ∧q. We state and prove some theorems in (α, β)-fuzzy BF-algebras.