{"title":"基于深度学习方法的胸部x线图像COVID-19诊断","authors":"N. Qaqos, O. Kareem","doi":"10.1109/ICOASE51841.2020.9436614","DOIUrl":null,"url":null,"abstract":"Coronavirus (COVID-19) disease is an infectious disease caused by the newly and deadly pneumonia type identified Coronavirus2 (SARS-CoV-2). A real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR) is the main method and has been regarded as the gold standard for diagnosing the COVID-19. Strict requirements and the limited supply of RT-PCR kits for the laboratory environment leads to delay in the accurate diagnosis of patients in addition to the test takes 4-6 hours to obtain the results. To tackle this problem, radiological images such as chest X-rays and CT scan could be the answer to test the COVID-19 infection rapidly and more efficiently. In this paper, an efficient proposed Convolution Neural Network (CNN) architecture model for COVID-19 detection based on chest X-ray images is presented. The proposed model is developed to provide accurate detection for binary classification (Normal vs. COVID-19), three class classification (Normal vs. COVID-19 vs. Pneumonia), and four class classification (Normal vs. COVID-19 vs. Pneumonia vs. Tuberculosis (TB)). Our proposed model produced an overall testing accuracy of 99.7%, 95.02%, and 94.53% for binary, three, and four class classifications, respectively. A comparison is made between this work and others shows the superior of this work over the others.","PeriodicalId":126112,"journal":{"name":"2020 International Conference on Advanced Science and Engineering (ICOASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"COVID-19 Diagnosis from Chest X-ray Images Using Deep Learning Approach\",\"authors\":\"N. Qaqos, O. Kareem\",\"doi\":\"10.1109/ICOASE51841.2020.9436614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronavirus (COVID-19) disease is an infectious disease caused by the newly and deadly pneumonia type identified Coronavirus2 (SARS-CoV-2). A real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR) is the main method and has been regarded as the gold standard for diagnosing the COVID-19. Strict requirements and the limited supply of RT-PCR kits for the laboratory environment leads to delay in the accurate diagnosis of patients in addition to the test takes 4-6 hours to obtain the results. To tackle this problem, radiological images such as chest X-rays and CT scan could be the answer to test the COVID-19 infection rapidly and more efficiently. In this paper, an efficient proposed Convolution Neural Network (CNN) architecture model for COVID-19 detection based on chest X-ray images is presented. The proposed model is developed to provide accurate detection for binary classification (Normal vs. COVID-19), three class classification (Normal vs. COVID-19 vs. Pneumonia), and four class classification (Normal vs. COVID-19 vs. Pneumonia vs. Tuberculosis (TB)). Our proposed model produced an overall testing accuracy of 99.7%, 95.02%, and 94.53% for binary, three, and four class classifications, respectively. A comparison is made between this work and others shows the superior of this work over the others.\",\"PeriodicalId\":126112,\"journal\":{\"name\":\"2020 International Conference on Advanced Science and Engineering (ICOASE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Advanced Science and Engineering (ICOASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOASE51841.2020.9436614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE51841.2020.9436614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COVID-19 Diagnosis from Chest X-ray Images Using Deep Learning Approach
Coronavirus (COVID-19) disease is an infectious disease caused by the newly and deadly pneumonia type identified Coronavirus2 (SARS-CoV-2). A real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR) is the main method and has been regarded as the gold standard for diagnosing the COVID-19. Strict requirements and the limited supply of RT-PCR kits for the laboratory environment leads to delay in the accurate diagnosis of patients in addition to the test takes 4-6 hours to obtain the results. To tackle this problem, radiological images such as chest X-rays and CT scan could be the answer to test the COVID-19 infection rapidly and more efficiently. In this paper, an efficient proposed Convolution Neural Network (CNN) architecture model for COVID-19 detection based on chest X-ray images is presented. The proposed model is developed to provide accurate detection for binary classification (Normal vs. COVID-19), three class classification (Normal vs. COVID-19 vs. Pneumonia), and four class classification (Normal vs. COVID-19 vs. Pneumonia vs. Tuberculosis (TB)). Our proposed model produced an overall testing accuracy of 99.7%, 95.02%, and 94.53% for binary, three, and four class classifications, respectively. A comparison is made between this work and others shows the superior of this work over the others.