STN PLAD:高分辨率无人机图像中多尺度电力线资产检测数据集

A. Silva, H. Felix, T. Chaves, Francisco Simões, V. Teichrieb, Michel Mozinho dos Santos, H. Santiago, V. Sgotti, H. B. D. T. L. Neto
{"title":"STN PLAD:高分辨率无人机图像中多尺度电力线资产检测数据集","authors":"A. Silva, H. Felix, T. Chaves, Francisco Simões, V. Teichrieb, Michel Mozinho dos Santos, H. Santiago, V. Sgotti, H. B. D. T. L. Neto","doi":"10.1109/sibgrapi54419.2021.00037","DOIUrl":null,"url":null,"abstract":"Many power line companies are using UAVs to perform their inspection processes instead of putting their workers at risk by making them climb high voltage power line towers, for instance. A crucial task for the inspection is to detect and classify assets in the power transmission lines. However, public data related to power line assets are scarce, preventing a faster evolution of this area. This work proposes the STN Power Line Assets Dataset, containing high-resolution and real-world images of multiple high-voltage power line components. It has 2,409 annotated objects divided into five classes: transmission tower, insulator, spacer, tower plate, and Stockbridge damper, which vary in size (resolution), orientation, illumination, angulation, and background. This work also presents an evaluation with popular deep object detection methods and MS-PAD, a new pipeline for detecting power line assets in hi-res UAV images. The latter outperforms the other methods achieving 89.2% mAP, showing considerable room for improvement. The STN PLAD dataset is publicly available at https://github.com/andreluizbvs/PLAD.","PeriodicalId":197423,"journal":{"name":"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"STN PLAD: A Dataset for Multi-Size Power Line Assets Detection in High-Resolution UAV Images\",\"authors\":\"A. Silva, H. Felix, T. Chaves, Francisco Simões, V. Teichrieb, Michel Mozinho dos Santos, H. Santiago, V. Sgotti, H. B. D. T. L. Neto\",\"doi\":\"10.1109/sibgrapi54419.2021.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many power line companies are using UAVs to perform their inspection processes instead of putting their workers at risk by making them climb high voltage power line towers, for instance. A crucial task for the inspection is to detect and classify assets in the power transmission lines. However, public data related to power line assets are scarce, preventing a faster evolution of this area. This work proposes the STN Power Line Assets Dataset, containing high-resolution and real-world images of multiple high-voltage power line components. It has 2,409 annotated objects divided into five classes: transmission tower, insulator, spacer, tower plate, and Stockbridge damper, which vary in size (resolution), orientation, illumination, angulation, and background. This work also presents an evaluation with popular deep object detection methods and MS-PAD, a new pipeline for detecting power line assets in hi-res UAV images. The latter outperforms the other methods achieving 89.2% mAP, showing considerable room for improvement. The STN PLAD dataset is publicly available at https://github.com/andreluizbvs/PLAD.\",\"PeriodicalId\":197423,\"journal\":{\"name\":\"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sibgrapi54419.2021.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sibgrapi54419.2021.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

例如,许多电力线公司正在使用无人机来执行检查过程,而不是让工人爬上高压电力线塔,使他们处于危险之中。输电线路巡检的一项关键任务是对输电线路中的资产进行检测和分类。然而,与电力线资产相关的公共数据稀缺,阻碍了这一领域的更快发展。这项工作提出了STN电力线资产数据集,其中包含多个高压电力线组件的高分辨率和真实图像。它有2409个注释对象,分为五类:输电塔、绝缘体、间隔器、塔板和斯托克布里奇阻尼器,它们的大小(分辨率)、方向、照明、角度和背景各不相同。本文还对目前流行的深度目标检测方法和用于高分辨率无人机图像中电力线资产检测的新型管道MS-PAD进行了评估。后者优于其他方法,达到89.2%的mAP,有很大的改进空间。STN PLAD数据集可在https://github.com/andreluizbvs/PLAD上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STN PLAD: A Dataset for Multi-Size Power Line Assets Detection in High-Resolution UAV Images
Many power line companies are using UAVs to perform their inspection processes instead of putting their workers at risk by making them climb high voltage power line towers, for instance. A crucial task for the inspection is to detect and classify assets in the power transmission lines. However, public data related to power line assets are scarce, preventing a faster evolution of this area. This work proposes the STN Power Line Assets Dataset, containing high-resolution and real-world images of multiple high-voltage power line components. It has 2,409 annotated objects divided into five classes: transmission tower, insulator, spacer, tower plate, and Stockbridge damper, which vary in size (resolution), orientation, illumination, angulation, and background. This work also presents an evaluation with popular deep object detection methods and MS-PAD, a new pipeline for detecting power line assets in hi-res UAV images. The latter outperforms the other methods achieving 89.2% mAP, showing considerable room for improvement. The STN PLAD dataset is publicly available at https://github.com/andreluizbvs/PLAD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信