枚举$0/1$的顶点-与$0/1$相关的多面体-完全非模矩阵

Khaled M. Elbassioni, K. Makino
{"title":"枚举$0/1$的顶点-与$0/1$相关的多面体-完全非模矩阵","authors":"Khaled M. Elbassioni, K. Makino","doi":"10.4230/LIPIcs.SWAT.2018.18","DOIUrl":null,"url":null,"abstract":"We give an incremental polynomial time algorithm for enumerating the vertices of any polyhedron $\\mathcal{P}(A,\\mathbf{1})=\\{x\\in\\RR^n \\mid Ax\\geq \\b1,~x\\geq \\b0\\}$, when $A$ is a totally unimodular matrix. Our algorithm is based on decomposing the hypergraph transversal problem for unimodular hypergraphs using Seymour's decomposition of totally unimodular matrices, and may be of independent interest.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enumerating Vertices of $0/1$-Polyhedra associated with $0/1$-Totally Unimodular Matrices\",\"authors\":\"Khaled M. Elbassioni, K. Makino\",\"doi\":\"10.4230/LIPIcs.SWAT.2018.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an incremental polynomial time algorithm for enumerating the vertices of any polyhedron $\\\\mathcal{P}(A,\\\\mathbf{1})=\\\\{x\\\\in\\\\RR^n \\\\mid Ax\\\\geq \\\\b1,~x\\\\geq \\\\b0\\\\}$, when $A$ is a totally unimodular matrix. Our algorithm is based on decomposing the hypergraph transversal problem for unimodular hypergraphs using Seymour's decomposition of totally unimodular matrices, and may be of independent interest.\",\"PeriodicalId\":447445,\"journal\":{\"name\":\"Scandinavian Workshop on Algorithm Theory\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Workshop on Algorithm Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SWAT.2018.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2018.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当$A$是一个完全非模矩阵时,我们给出了枚举任意多面体$\mathcal{P}(A,\mathbf{1})=\{x\in\RR^n \mid Ax\geq \b1,~x\geq \b0\}$顶点的增量多项式时间算法。我们的算法是基于用Seymour的全非模矩阵分解来分解非模超图的截线问题,并且可能具有独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumerating Vertices of $0/1$-Polyhedra associated with $0/1$-Totally Unimodular Matrices
We give an incremental polynomial time algorithm for enumerating the vertices of any polyhedron $\mathcal{P}(A,\mathbf{1})=\{x\in\RR^n \mid Ax\geq \b1,~x\geq \b0\}$, when $A$ is a totally unimodular matrix. Our algorithm is based on decomposing the hypergraph transversal problem for unimodular hypergraphs using Seymour's decomposition of totally unimodular matrices, and may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信