智能辅导系统中学生建模推理过程的管理

R. Nkambou
{"title":"智能辅导系统中学生建模推理过程的管理","authors":"R. Nkambou","doi":"10.1109/TAI.1999.809760","DOIUrl":null,"url":null,"abstract":"We present an approach to managing the side effect of information updates in the student model (SM). The approach is based on fuzzy logic and fuzzy reasoning on the knowledge structure in the SM. The SM includes three parts: a cognitive model, a behavioural model and an inference engine. The cognitive model is an overlay on curriculum knowledge structures, the behaviour model contains affective and conative values of the student and the inference engine aims to manage updates occurring in the SM during the learning process. As updates imply the evolution of the knowledge structure of the student the propagation module evaluates the possible impacts of the updated information on other related information. This is done by activating a fuzzy reasoning on knowledge networks in the curriculum and deducing new information in the SM. The control module handles conflict situations by considering factors such as the information source and the confidence degree.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Managing inference process in student modelling for intelligent tutoring systems\",\"authors\":\"R. Nkambou\",\"doi\":\"10.1109/TAI.1999.809760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach to managing the side effect of information updates in the student model (SM). The approach is based on fuzzy logic and fuzzy reasoning on the knowledge structure in the SM. The SM includes three parts: a cognitive model, a behavioural model and an inference engine. The cognitive model is an overlay on curriculum knowledge structures, the behaviour model contains affective and conative values of the student and the inference engine aims to manage updates occurring in the SM during the learning process. As updates imply the evolution of the knowledge structure of the student the propagation module evaluates the possible impacts of the updated information on other related information. This is done by activating a fuzzy reasoning on knowledge networks in the curriculum and deducing new information in the SM. The control module handles conflict situations by considering factors such as the information source and the confidence degree.\",\"PeriodicalId\":194023,\"journal\":{\"name\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1999.809760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们提出了一种在学生模型(SM)中管理信息更新副作用的方法。该方法是基于模糊逻辑和模糊推理的SM知识结构。该模型包括三个部分:认知模型、行为模型和推理引擎。认知模型是对课程知识结构的覆盖,行为模型包含学生的情感和思维价值,推理引擎旨在管理学习过程中SM中发生的更新。由于更新意味着学生知识结构的演变,传播模块评估更新的信息对其他相关信息可能产生的影响。这是通过激活课程中知识网络的模糊推理,并在SM中演绎新信息来实现的。控制模块通过考虑信息源和置信度等因素来处理冲突情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Managing inference process in student modelling for intelligent tutoring systems
We present an approach to managing the side effect of information updates in the student model (SM). The approach is based on fuzzy logic and fuzzy reasoning on the knowledge structure in the SM. The SM includes three parts: a cognitive model, a behavioural model and an inference engine. The cognitive model is an overlay on curriculum knowledge structures, the behaviour model contains affective and conative values of the student and the inference engine aims to manage updates occurring in the SM during the learning process. As updates imply the evolution of the knowledge structure of the student the propagation module evaluates the possible impacts of the updated information on other related information. This is done by activating a fuzzy reasoning on knowledge networks in the curriculum and deducing new information in the SM. The control module handles conflict situations by considering factors such as the information source and the confidence degree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信