A. Attanayake
{"title":"斯里兰卡COVID-19疫苗接种覆盖率:在易感-感染-恢复模拟中有无年龄分层","authors":"A. Attanayake","doi":"10.52547/johe.11.2.91","DOIUrl":null,"url":null,"abstract":"Background: Vaccination against COVID-19 is as a key solution to interrupt its spread. This study aimed to describe the vaccination coverage required to stop the spread of COVID-19 in Sri Lanka using a mathematical modeling strategy. Materials & Methods: This longitudinal study used age-stratified and unstratified Susceptible-Infectious-Recovered (SIR) models. Data on the population's age distribution were acquired from the census report of the Census and Statistics Center of Sri Lanka, consisting of groups: below 30, between 30-59, and over 60. Models with differential equations forecasted the spread of COVID-19 with vaccination based on parameter estimates and numerical simulation, assuming fixed population, infection, and recovery rates. Results: Simulations investigated how the susceptible, infected, and recovered populations varied according to the different vaccination coverages. According to the results, 75% vaccination coverage was required in the entire population of Sri Lanka to interrupt the transmission of COVID-19 completely. The age-stratified SIR model showed that over 90% of vaccination coverage in each age group (below 30, between 30-59, and over 60) was required to interrupt the transmission of COVID-19 in the country altogether. Conclusions: The number of COVID-19 infections in each age group of Sri Lanka reduces with the increase in vaccination coverage. As 75% vaccination coverage is required in Sri Lanka to interrupt the transmission of the disease, precise vaccination coverage measurement is essential to assess the successfulness of a vaccine campaign and control COVID-19. © The Author(s) 2022;All rights reserved. Published by Rafsanjan University of Medical Sciences Press.","PeriodicalId":140710,"journal":{"name":"Journal of Occupational Health and Epidemiology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vaccination Coverage for COVID-19 in Sri Lanka: With and Without Age Stratification on Susceptible-Infectious-Recovered Simulation\",\"authors\":\"A. Attanayake\",\"doi\":\"10.52547/johe.11.2.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Vaccination against COVID-19 is as a key solution to interrupt its spread. This study aimed to describe the vaccination coverage required to stop the spread of COVID-19 in Sri Lanka using a mathematical modeling strategy. Materials & Methods: This longitudinal study used age-stratified and unstratified Susceptible-Infectious-Recovered (SIR) models. Data on the population's age distribution were acquired from the census report of the Census and Statistics Center of Sri Lanka, consisting of groups: below 30, between 30-59, and over 60. Models with differential equations forecasted the spread of COVID-19 with vaccination based on parameter estimates and numerical simulation, assuming fixed population, infection, and recovery rates. Results: Simulations investigated how the susceptible, infected, and recovered populations varied according to the different vaccination coverages. According to the results, 75% vaccination coverage was required in the entire population of Sri Lanka to interrupt the transmission of COVID-19 completely. The age-stratified SIR model showed that over 90% of vaccination coverage in each age group (below 30, between 30-59, and over 60) was required to interrupt the transmission of COVID-19 in the country altogether. Conclusions: The number of COVID-19 infections in each age group of Sri Lanka reduces with the increase in vaccination coverage. As 75% vaccination coverage is required in Sri Lanka to interrupt the transmission of the disease, precise vaccination coverage measurement is essential to assess the successfulness of a vaccine campaign and control COVID-19. © The Author(s) 2022;All rights reserved. Published by Rafsanjan University of Medical Sciences Press.\",\"PeriodicalId\":140710,\"journal\":{\"name\":\"Journal of Occupational Health and Epidemiology\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Occupational Health and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/johe.11.2.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational Health and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/johe.11.2.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Vaccination Coverage for COVID-19 in Sri Lanka: With and Without Age Stratification on Susceptible-Infectious-Recovered Simulation
Background: Vaccination against COVID-19 is as a key solution to interrupt its spread. This study aimed to describe the vaccination coverage required to stop the spread of COVID-19 in Sri Lanka using a mathematical modeling strategy. Materials & Methods: This longitudinal study used age-stratified and unstratified Susceptible-Infectious-Recovered (SIR) models. Data on the population's age distribution were acquired from the census report of the Census and Statistics Center of Sri Lanka, consisting of groups: below 30, between 30-59, and over 60. Models with differential equations forecasted the spread of COVID-19 with vaccination based on parameter estimates and numerical simulation, assuming fixed population, infection, and recovery rates. Results: Simulations investigated how the susceptible, infected, and recovered populations varied according to the different vaccination coverages. According to the results, 75% vaccination coverage was required in the entire population of Sri Lanka to interrupt the transmission of COVID-19 completely. The age-stratified SIR model showed that over 90% of vaccination coverage in each age group (below 30, between 30-59, and over 60) was required to interrupt the transmission of COVID-19 in the country altogether. Conclusions: The number of COVID-19 infections in each age group of Sri Lanka reduces with the increase in vaccination coverage. As 75% vaccination coverage is required in Sri Lanka to interrupt the transmission of the disease, precise vaccination coverage measurement is essential to assess the successfulness of a vaccine campaign and control COVID-19. © The Author(s) 2022;All rights reserved. Published by Rafsanjan University of Medical Sciences Press.