根平方零Nakayama代数的Auslander代数上的可倾模分类

Xiaojin Zhang
{"title":"根平方零Nakayama代数的Auslander代数上的可倾模分类","authors":"Xiaojin Zhang","doi":"10.1142/s0219498822500414","DOIUrl":null,"url":null,"abstract":"Let $\\Lambda$ be a radical square zero Nakayama algebra with $n$ simple modules and let $\\Gamma$ be the Auslander algebra of $\\Lambda$. Then every indecomposable direct summand of a tilting $\\Gamma$-module is either simple or projective. Moreover, if $\\Lambda$ is self-injective, then the number of tilting $\\Gamma$-modules is $2^n$; otherwise, the number of tilting $\\Gamma$-modules is $2^{n-1}$.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classifying tilting modules over the Auslander algebras of radical square zero Nakayama algebras\",\"authors\":\"Xiaojin Zhang\",\"doi\":\"10.1142/s0219498822500414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Lambda$ be a radical square zero Nakayama algebra with $n$ simple modules and let $\\\\Gamma$ be the Auslander algebra of $\\\\Lambda$. Then every indecomposable direct summand of a tilting $\\\\Gamma$-module is either simple or projective. Moreover, if $\\\\Lambda$ is self-injective, then the number of tilting $\\\\Gamma$-modules is $2^n$; otherwise, the number of tilting $\\\\Gamma$-modules is $2^{n-1}$.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498822500414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498822500414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设$\Lambda$为具有$n$简单模的根平方根零中山代数,设$\Gamma$为$\Lambda$的Auslander代数。然后,倾斜$\Gamma$ -模块的每个不可分解的直接求和要么是简单的,要么是投影的。此外,如果$\Lambda$是自注入的,则倾斜的$\Gamma$ -模块数为$2^n$;否则,倾斜的$\Gamma$ -模块数为$2^{n-1}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying tilting modules over the Auslander algebras of radical square zero Nakayama algebras
Let $\Lambda$ be a radical square zero Nakayama algebra with $n$ simple modules and let $\Gamma$ be the Auslander algebra of $\Lambda$. Then every indecomposable direct summand of a tilting $\Gamma$-module is either simple or projective. Moreover, if $\Lambda$ is self-injective, then the number of tilting $\Gamma$-modules is $2^n$; otherwise, the number of tilting $\Gamma$-modules is $2^{n-1}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信