自然语言理解的新方法

W. Hsu, Sven Riemenschneider, Chun-Hung Chen, Ching-Ching Lu
{"title":"自然语言理解的新方法","authors":"W. Hsu, Sven Riemenschneider, Chun-Hung Chen, Ching-Ching Lu","doi":"10.1109/icpai51961.2020.00035","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a principle-based approach, combining a corpus-based approach and a knowledge-based approach. There are two parts of a principle: (1) Structure: such as verb frames, address patterns; (2) Statistics: mostly related to collocation and frequency. The method is based on a pipeline of four main stages, allowing to contribute to automatically building ontologies from text corpora, aimed to extract relations between words from the unstructured text.","PeriodicalId":330198,"journal":{"name":"2020 International Conference on Pervasive Artificial Intelligence (ICPAI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Approach for Natural Language Understanding\",\"authors\":\"W. Hsu, Sven Riemenschneider, Chun-Hung Chen, Ching-Ching Lu\",\"doi\":\"10.1109/icpai51961.2020.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a principle-based approach, combining a corpus-based approach and a knowledge-based approach. There are two parts of a principle: (1) Structure: such as verb frames, address patterns; (2) Statistics: mostly related to collocation and frequency. The method is based on a pipeline of four main stages, allowing to contribute to automatically building ontologies from text corpora, aimed to extract relations between words from the unstructured text.\",\"PeriodicalId\":330198,\"journal\":{\"name\":\"2020 International Conference on Pervasive Artificial Intelligence (ICPAI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Pervasive Artificial Intelligence (ICPAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icpai51961.2020.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Pervasive Artificial Intelligence (ICPAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icpai51961.2020.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种基于原则的方法,结合了基于语料库的方法和基于知识的方法。一个原则有两部分:(1)结构:如动词框架、称呼模式;(2)统计学:多与搭配和频次有关。该方法基于四个主要阶段的管道,允许从文本语料库中自动构建本体,旨在从非结构化文本中提取单词之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Approach for Natural Language Understanding
In this paper, we propose a principle-based approach, combining a corpus-based approach and a knowledge-based approach. There are two parts of a principle: (1) Structure: such as verb frames, address patterns; (2) Statistics: mostly related to collocation and frequency. The method is based on a pipeline of four main stages, allowing to contribute to automatically building ontologies from text corpora, aimed to extract relations between words from the unstructured text.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信