光学学习芯片的首次演示

K. Kyuma, Y. Nitta, J. Ohta, S. Tai, Masanobu Takahashi
{"title":"光学学习芯片的首次演示","authors":"K. Kyuma, Y. Nitta, J. Ohta, S. Tai, Masanobu Takahashi","doi":"10.1364/optcomp.1991.wb2","DOIUrl":null,"url":null,"abstract":"Recently, there has been a strong interest in artificial neural networks for real time applications. Among several approaches, opto-electronic neural networks1) are quite attractive because of a dense-interconnection, a parallelprocessing, and a large-scale integration capabilities using the advanced GaAs semiconductor technologies.","PeriodicalId":302010,"journal":{"name":"Optical Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The First Demonstration of an Optical Learning Chip\",\"authors\":\"K. Kyuma, Y. Nitta, J. Ohta, S. Tai, Masanobu Takahashi\",\"doi\":\"10.1364/optcomp.1991.wb2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there has been a strong interest in artificial neural networks for real time applications. Among several approaches, opto-electronic neural networks1) are quite attractive because of a dense-interconnection, a parallelprocessing, and a large-scale integration capabilities using the advanced GaAs semiconductor technologies.\",\"PeriodicalId\":302010,\"journal\":{\"name\":\"Optical Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optcomp.1991.wb2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcomp.1991.wb2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近,人们对实时应用的人工神经网络产生了浓厚的兴趣。在几种方法中,光电神经网络因其密集互连、并行处理和使用先进的砷化镓半导体技术的大规模集成能力而颇具吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The First Demonstration of an Optical Learning Chip
Recently, there has been a strong interest in artificial neural networks for real time applications. Among several approaches, opto-electronic neural networks1) are quite attractive because of a dense-interconnection, a parallelprocessing, and a large-scale integration capabilities using the advanced GaAs semiconductor technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信