可持续交通的聚类分析:以纽约市开放数据为例

Gerjane Joy Cabunagan-Cinco, Enayat Rajabi, Sławomir Nowaczyk
{"title":"可持续交通的聚类分析:以纽约市开放数据为例","authors":"Gerjane Joy Cabunagan-Cinco, Enayat Rajabi, Sławomir Nowaczyk","doi":"10.1109/ICAPAI55158.2022.9801569","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) provides the opportunity to analyze complex transportation domains from various perspectives. Sustainability is one of the important transportation factors vital for a robust, fair, and efficient living environment and the livability of a city. This article leverages different feature engineering techniques on the New York City mobility dataset to identify the significant sustainability factors and employ the k-means clustering technique to cluster the commuters based on their transportation modes and demographics. Cluster analysis is performed based on the specified features and sustainable mode of transportation. Our cluster analysis of commuters on the New York City dataset shows that demographic information such as gender or race does not influence the sustainable mode of transportation, while the \"start location\" of travellers and their car access are influencing factors on sustainability.","PeriodicalId":132826,"journal":{"name":"2022 International Conference on Applied Artificial Intelligence (ICAPAI)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster Analysis on Sustainable Transportation: The Case of New York City Open Data\",\"authors\":\"Gerjane Joy Cabunagan-Cinco, Enayat Rajabi, Sławomir Nowaczyk\",\"doi\":\"10.1109/ICAPAI55158.2022.9801569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence (AI) provides the opportunity to analyze complex transportation domains from various perspectives. Sustainability is one of the important transportation factors vital for a robust, fair, and efficient living environment and the livability of a city. This article leverages different feature engineering techniques on the New York City mobility dataset to identify the significant sustainability factors and employ the k-means clustering technique to cluster the commuters based on their transportation modes and demographics. Cluster analysis is performed based on the specified features and sustainable mode of transportation. Our cluster analysis of commuters on the New York City dataset shows that demographic information such as gender or race does not influence the sustainable mode of transportation, while the \\\"start location\\\" of travellers and their car access are influencing factors on sustainability.\",\"PeriodicalId\":132826,\"journal\":{\"name\":\"2022 International Conference on Applied Artificial Intelligence (ICAPAI)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Applied Artificial Intelligence (ICAPAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPAI55158.2022.9801569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Applied Artificial Intelligence (ICAPAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPAI55158.2022.9801569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)提供了从不同角度分析复杂交通领域的机会。可持续性是一个重要的交通因素之一,对于一个健全、公平、高效的生活环境和宜居性至关重要。本文利用纽约市交通数据集的不同特征工程技术来识别重要的可持续性因素,并采用k-means聚类技术根据通勤者的交通方式和人口统计数据对他们进行聚类。根据指定的特征和可持续的交通方式进行聚类分析。我们对纽约市数据集上通勤者的聚类分析表明,性别或种族等人口统计信息不会影响可持续的交通方式,而旅行者的“起点位置”和他们的汽车可达性是影响可持续性的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster Analysis on Sustainable Transportation: The Case of New York City Open Data
Artificial Intelligence (AI) provides the opportunity to analyze complex transportation domains from various perspectives. Sustainability is one of the important transportation factors vital for a robust, fair, and efficient living environment and the livability of a city. This article leverages different feature engineering techniques on the New York City mobility dataset to identify the significant sustainability factors and employ the k-means clustering technique to cluster the commuters based on their transportation modes and demographics. Cluster analysis is performed based on the specified features and sustainable mode of transportation. Our cluster analysis of commuters on the New York City dataset shows that demographic information such as gender or race does not influence the sustainable mode of transportation, while the "start location" of travellers and their car access are influencing factors on sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信