高斯消去的时空最小收缩结构与代数路径问题

A. Benaini, Y. Robert
{"title":"高斯消去的时空最小收缩结构与代数路径问题","authors":"A. Benaini, Y. Robert","doi":"10.1109/ASAP.1990.145509","DOIUrl":null,"url":null,"abstract":"The authors have designed two systolic arrays that are both time-minimal and space-minimal for Gaussian elimination and the algebraic path problem (APP), thereby establishing the systolic complexity of these two computational kernels. The systolic computation is modeled by a directed acyclic graph (DAG) with nodes corresponding to computed values and arcs denoting dependencies. The computation DAG is taken to be fixed and given. The time to compute a DAG is determined when a timing function is assigned, or scheduled, to the nodes, subject to the constraints that a node can be computed only when its predecessors (the nodes which it depends upon) have been computed at previous steps, and no processor can compute two different nodes at the same time step. For a problem of size n, the authors obtain an execution time (T(n))=3n-1 using A(n)=n/sup 2//4+O(n) processors for Gaussian elimination, and T(n)=5n-2 and A(n)=n/sup 3//3+O(n) for the APP.<<ETX>>","PeriodicalId":438078,"journal":{"name":"[1990] Proceedings of the International Conference on Application Specific Array Processors","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Spacetime-minimal systolic architectures for Gaussian elimination and the algebraic path problem\",\"authors\":\"A. Benaini, Y. Robert\",\"doi\":\"10.1109/ASAP.1990.145509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors have designed two systolic arrays that are both time-minimal and space-minimal for Gaussian elimination and the algebraic path problem (APP), thereby establishing the systolic complexity of these two computational kernels. The systolic computation is modeled by a directed acyclic graph (DAG) with nodes corresponding to computed values and arcs denoting dependencies. The computation DAG is taken to be fixed and given. The time to compute a DAG is determined when a timing function is assigned, or scheduled, to the nodes, subject to the constraints that a node can be computed only when its predecessors (the nodes which it depends upon) have been computed at previous steps, and no processor can compute two different nodes at the same time step. For a problem of size n, the authors obtain an execution time (T(n))=3n-1 using A(n)=n/sup 2//4+O(n) processors for Gaussian elimination, and T(n)=5n-2 and A(n)=n/sup 3//3+O(n) for the APP.<<ETX>>\",\"PeriodicalId\":438078,\"journal\":{\"name\":\"[1990] Proceedings of the International Conference on Application Specific Array Processors\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings of the International Conference on Application Specific Array Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.1990.145509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the International Conference on Application Specific Array Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.1990.145509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

为高斯消去和代数路径问题(APP)设计了两个时间极小和空间极小的收缩数组,从而建立了这两个计算核的收缩复杂度。收缩计算采用有向无环图(DAG)建模,节点对应计算值,弧表示依赖关系。计算DAG是固定且给定的。计算DAG的时间是在为节点分配或调度定时函数时确定的,这取决于节点只能在其前一个节点(它所依赖的节点)在前一个步骤中被计算时才能计算的约束,并且没有处理器可以在同一时间步计算两个不同的节点。对于大小为n的问题,作者使用a (n)=n/sup 2//4+O(n)处理器获得执行时间(T(n))=3n-1,用于高斯消去,对于APP, T(n)=5n-2和a (n)=n/sup 3//3+O(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spacetime-minimal systolic architectures for Gaussian elimination and the algebraic path problem
The authors have designed two systolic arrays that are both time-minimal and space-minimal for Gaussian elimination and the algebraic path problem (APP), thereby establishing the systolic complexity of these two computational kernels. The systolic computation is modeled by a directed acyclic graph (DAG) with nodes corresponding to computed values and arcs denoting dependencies. The computation DAG is taken to be fixed and given. The time to compute a DAG is determined when a timing function is assigned, or scheduled, to the nodes, subject to the constraints that a node can be computed only when its predecessors (the nodes which it depends upon) have been computed at previous steps, and no processor can compute two different nodes at the same time step. For a problem of size n, the authors obtain an execution time (T(n))=3n-1 using A(n)=n/sup 2//4+O(n) processors for Gaussian elimination, and T(n)=5n-2 and A(n)=n/sup 3//3+O(n) for the APP.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信