四种用于复杂光谱或点估计的超分辨率技术的比较

Guanze Peng, I. Lu
{"title":"四种用于复杂光谱或点估计的超分辨率技术的比较","authors":"Guanze Peng, I. Lu","doi":"10.1109/LISAT.2017.8001978","DOIUrl":null,"url":null,"abstract":"In this work, we evaluate performances of four super-resolution techniques for estimating complex spectra or points under various scenarios. Suitable for resolving non-coherent signals, the two adaptive techniques (Root-MUSIC and ESPRIT) use multiple snapshots to acquire data covariance matrix, which can then be divided into signal subspace and noise subspace for estimating the desired complex parameters. While only utilizing one snapshot to estimate parameters, the two non-adaptive techniques (Matrix Pencil and MODE) are suitable to deal with coherent signals.","PeriodicalId":370931,"journal":{"name":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of four super-resolution techniques for complex spectra or points estimation\",\"authors\":\"Guanze Peng, I. Lu\",\"doi\":\"10.1109/LISAT.2017.8001978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we evaluate performances of four super-resolution techniques for estimating complex spectra or points under various scenarios. Suitable for resolving non-coherent signals, the two adaptive techniques (Root-MUSIC and ESPRIT) use multiple snapshots to acquire data covariance matrix, which can then be divided into signal subspace and noise subspace for estimating the desired complex parameters. While only utilizing one snapshot to estimate parameters, the two non-adaptive techniques (Matrix Pencil and MODE) are suitable to deal with coherent signals.\",\"PeriodicalId\":370931,\"journal\":{\"name\":\"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LISAT.2017.8001978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISAT.2017.8001978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们评估了四种超分辨率技术在不同场景下估计复杂光谱或点的性能。Root-MUSIC和ESPRIT两种自适应技术适用于非相干信号的分解,采用多快照获取数据协方差矩阵,将数据协方差矩阵划分为信号子空间和噪声子空间,用于估计所需的复参数。虽然只使用一个快照来估计参数,但两种非自适应技术(矩阵铅笔和模式)适合处理相干信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of four super-resolution techniques for complex spectra or points estimation
In this work, we evaluate performances of four super-resolution techniques for estimating complex spectra or points under various scenarios. Suitable for resolving non-coherent signals, the two adaptive techniques (Root-MUSIC and ESPRIT) use multiple snapshots to acquire data covariance matrix, which can then be divided into signal subspace and noise subspace for estimating the desired complex parameters. While only utilizing one snapshot to estimate parameters, the two non-adaptive techniques (Matrix Pencil and MODE) are suitable to deal with coherent signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信